
Citation: Fatima, S.; Mansoor, B.;

Ovais, L.; Sadruddin, S.A.;

Hashmi, S.A. Automated Testing

with Machine Learning Frameworks:

A Critical Analysis. Eng. Proc. 2022,

20, 12. https://doi.org/10.3390/

engproc2022020012

Academic Editor: Saad Ahmed Qazi

Published: 28 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Automated Testing with Machine Learning Frameworks: A
Critical Analysis †

Sana Fatima * , Bisma Mansoor, Laiba Ovais, Sajid Ali Sadruddin and Syed Aun Hashmi

Department of Software Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan;
mansoor4102449@cloud.neduet.edu.pk (B.M.); laiba4101071@cloud.neduet.edu.pk (L.O.);
sadruddin4108747@cloud.neduet.edu.pk (S.A.S.); hashmi4102782@cloud.neduet.edu.pk (S.A.H.)
* Correspondence: sanafatima@cloud.neduet.edu.pk
† Presented at the 7th International Electrical Engineering Conference, Karachi, Pakistan, 25–26 March 2022.

Abstract: As software systems are becoming more and more complex and standard testing practices
are exhausting, we need smart solutions to reduce the time, efforts and resources spent on software
testing. The aim of this paper was to critically analyze machine learning (ML) frameworks related to
software automation. We measured the performance of testing tools on the basis of the manual labor
(effort) required, in addition to the test performance, accuracy or error rate, scope, time required and
prerequisite knowledge requirements. These factors play a vital role to ensure ML frameworks with
automation software can produce great results and hence improve software quality.

Keywords: machine learning; software quality; software testing; automation; performance; manual
labor; accuracy; test scope; time required; prerequisite knowledge requirement

1. Introduction

One of the most important parts of the software development cycle is testing. We
can see many companies invest almost half of their resources in testing. Many researchers
are trying to improve their software quality testing methods and we made significant
progress from redundant manual testing to automation test cases. Automation is a major
breakthrough in software testing [1]. Automation testing allows developers to write test
cases that can be executed on their own and provide instant feedback for what happens
on some inputs. The most important benefit that automation testing offers is a decreased
testing time and effort. Even with this huge breakthrough, there is still a huge room for
improvement. Automation testing, though considered automatic, still requires a lot of
human effort in selecting the right tool and skilled resources.

However, in the era of the ever-growing field of artificial intelligence, we should expect
software to behave intelligently [2]. Our paper highlights the importance and use cases
of artificial intelligence and machine learning frameworks in making automation testing
or testing in general better [3]. ML frameworks will make use of such algorithms that
make automation software somewhat intelligent. The goal of our research is to categorize
the use of ML frameworks in software testing and how they have an edge over normal
automation testing. Our proposed framework will not only reduce the time and effort
spent on testing but will also help to increase the quality of the software being tested. In a
literature review, we reviewed some previous works to understand the current solutions.
Then, in the methodology, we described the ML framework we are analyzing. The case
study about TechM’s analytics tool was performed so that we have good grounds for
comparison. Afterwards, analysis was performed on the results we gathered.

2. Literature Review

In this paper [1], the researchers explained some critical factors that affect the soft-
ware’s cost, quality and time to market and how automation can minimize these factors.

Eng. Proc. 2022, 20, 12. https://doi.org/10.3390/engproc2022020012 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2022020012
https://doi.org/10.3390/engproc2022020012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0001-9688-1727
https://doi.org/10.3390/engproc2022020012
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2022020012?type=check_update&version=1

Eng. Proc. 2022, 20, 12 2 of 6

They discovered that there was a need for a solution that can calculate the effects of test
automation or benefits in terms of the aforementioned factors. They calculated the efforts
and price for both manual and automation software testing. Automation testing took less
time and effort, decreased the time to market but was a bit costly but since efforts were
reduced by a big margin and the cost difference was not that significant.

In [3], some machine learning frameworks were discussed that could be used in
automated testing tools. They proposed a new machine learning framework to increase the
performance of software testing tools. They further analyzed and classified some machine
learning algorithms according to the part of testing that they can be utilized in. It was
concluded that, by using their proposed ML methods, researchers can solve problems in
automation software testing.

The researchers in [4] proposed deep learning techniques to predict defect occurrence
and changes that can lead to more defects. They followed J. Han and M. Kamber [5]
research and further improved the results. They used the dataset from six open source
projects with 137,417 changes. The first task was to find the optimum features to apply
deep learning algorithms. A logistic regression [6] algorithm was used. They constructed
the model in four phases. First, they cleaned and labeled the dataset and the second phase
was data processing. In the third phase of feature integration, a Deep Belief Network [7]
was constructed. In the final phase, the classifier was constructed and predictions were
made. The approach used in this paper was better than that in [5] because the average
recall was 69% and the F1 score was 45%. In conclusion, their model can identify more than
50% defective changes by only viewing 20% of the total source code.

In [8], the researcher conducted a study to reduce the amount of test cases needed
for software testing using artificial neural networks. The first section covers non-neural
network approaches. The next section discusses neural network-based software testing
approaches. The method to reduce test cases was input–output analysis with ANNs. The
model outputted the list of test cases. The proposed method lies in the black box testing
category and does not require any source code.

The researchers in [9] discussed some machine learning algorithms with their usage
in software testing and how they can improve bug exploration. First, they analyzed the
existing conventional approaches of software testing, manual testing and their impact on
software quality. Then, they analyzed previous research wherein some ML approaches
were used. This paper outlined how ML can be used in software testing processes in future
testing tools.

3. Methodology
3.1. Modernization of Automation Testing

In order to revolutionize the field of automation testing, the use of artificial intelligence
was deemed necessary. There are various major mechanisms that can be followed for the
purpose of training a machine, namely supervised learning, unsupervised learning, deep
learning (use of neural network) and reinforcement learning [10].

3.2. Use of Machine Learning

According to surveys, the field of automation testing will be deeply impacted by the
employment of machine learning. By using machine learning in testing, we will allow our
systems to learn from experience, i.e., the system would be able to assess the facts and data
presented to it, build and run test cases on the said data and then study from the result of
the test cases. This whole procedure would in turn effectively enhance the testing cycle.
Machine learning helps the system to develop and provide more precise results in less time.

In this particular approach supervised machine learning, a set of data are fed to the
system as training examples. The system internalizes this information and then predicts or
classifies new data. The steps that are followed in these approaches are [10]:

1. Identify your data sources;
2. Train the machine to identify correlations;

Eng. Proc. 2022, 20, 12 3 of 6

3. Review predictions;
4. Find algorithms with sufficient accuracy;
5. Apply the predictions to new data;
6. Indicate the expected prediction accuracy;
7. Learn and evolve.

The other approach is unsupervised machine learning. Neural networks fall under
this category and are often used in systems. Neural networks are based on the functioning
of the actual human brain and are algorithms that study and generalize from abstract
concepts. They use a set of variables that can be adjusted form the learning procedure until
the required level of accuracy is achieved.

3.3. Implementing Machine Learning

Predictive analysis, based on supervised learning, makes use of the results that are
achieved by the system by changing the algorithms based on those results. Using this
approach, we can implement its techniques for the purpose of risk assessment. (Risk
assessment is used to comprehend and diminish the risks involved). For risk assessment,
the observed data points related to the impact of failure and the likelihood of failure are
gathered. Using the supervised learning, these points are used to train the system. By thus
training the system, new data can be subjected to these algorithms to reach accurate results.
In an example [10], the risk assessment grid was used to represent the results collected
devoid of the use of supervised learning and they all converged at the same column in the
grid. It was not an efficient solution. After the use of predictive analytics, the following
grid (shown in Figure 1) was obtained:

Eng. Proc. 2022, 20, 12 3 of 6

In this particular approach supervised machine learning, a set of data are fed to the
system as training examples. The system internalizes this information and then predicts
or classifies new data. The steps that are followed in these approaches are [10]:
1. Identify your data sources;
2. Train the machine to identify correlations;
3. Review predictions;
4. Find algorithms with sufficient accuracy;
5. Apply the predictions to new data;
6. Indicate the expected prediction accuracy;
7. Learn and evolve.

The other approach is unsupervised machine learning. Neural networks fall under
this category and are often used in systems. Neural networks are based on the function-
ing of the actual human brain and are algorithms that study and generalize from abstract
concepts. They use a set of variables that can be adjusted form the learning procedure
until the required level of accuracy is achieved.

3.3. Implementing Machine Learning
Predictive analysis, based on supervised learning, makes use of the results that are

achieved by the system by changing the algorithms based on those results. Using this
approach, we can implement its techniques for the purpose of risk assessment. (Risk as-
sessment is used to comprehend and diminish the risks involved). For risk assessment,
the observed data points related to the impact of failure and the likelihood of failure are
gathered. Using the supervised learning, these points are used to train the system. By
thus training the system, new data can be subjected to these algorithms to reach accurate
results. In an example [10], the risk assessment grid was used to represent the results
collected devoid of the use of supervised learning and they all converged at the same
column in the grid. It was not an efficient solution. After the use of predictive analytics,
the following grid (shown in Figure 1) was obtained:

Figure 1. X3 Risk Assessment Grid.

3.4. Case Study
A test analytics [10] platform was developed by an Indian multinational company

Tech Mahindra which has been integrated with their proprietary tool eConvergence. It
uses machine learning to extract meaningful information from data collected from testing
tools and helps to find the causes of defects and bugs by reducing the time for STLC. This
test analytics tool captures analytic feeds from data regarding defects and tests and pro-
ceeds towards the defect prediction model which uses machine learning algorithms and
helps predict the foresights in order to improve the business outcomes by analyzing the
historical test practices. Figure 2 gives a clear demonstration of the working of TechM’s
analytics tool. Data from testing tools are transferred to the test reporting dashboard for
aggregation and then proceed to the test analytics platform for predictive analysis based

Figure 1. X3 Risk Assessment Grid.

3.4. Case Study

A test analytics [10] platform was developed by an Indian multinational company
Tech Mahindra which has been integrated with their proprietary tool eConvergence. It uses
machine learning to extract meaningful information from data collected from testing tools
and helps to find the causes of defects and bugs by reducing the time for STLC. This test
analytics tool captures analytic feeds from data regarding defects and tests and proceeds
towards the defect prediction model which uses machine learning algorithms and helps
predict the foresights in order to improve the business outcomes by analyzing the historical
test practices. Figure 2 gives a clear demonstration of the working of TechM’s analytics
tool. Data from testing tools are transferred to the test reporting dashboard for aggregation
and then proceed to the test analytics platform for predictive analysis based on historical
data. In the last step, the tests are prioritized on the basis of the risk of their failure and
predictions are made which are discussed in the following section.

Eng. Proc. 2022, 20, 12 4 of 6

Eng. Proc. 2022, 20, 12 4 of 6

on historical data. In the last step, the tests are prioritized on the basis of the risk of their
failure and predictions are made which are discussed in the following section.

Figure 2. Diagrammatic view of TechM’s ML-based tool.

3.5. Comparing Conventional and ML-Based Testing Tools
The comparison (Table 1) is performed by using six standard attributes, i.e., manual

labor, test performance, error inaccuracy, test scope, time invested and prerequisite pro-
gramming skills.

Table 1. Conventional and ML-based automation: a comparison.

Criterion Conventional Test Automation ML-Based Test Automation

Manual labor More involvement of manual labor.
Less amount of manual labor
required.

Test
performances

Needs to be modified through
proactive efforts.

Exhibits the property of
self-healing.

Error and
inaccuracy

Because of the high involvement of
man power, conventional test
automation is prone to a high
number of errors and inaccuracies.

As the machine replaces most of
the human efforts in ML-based
automation, it is less likely to
produce errors or in accuracies.

Test scope
The aspects or requirement in the
software needs to test through
active endeavor.

During the process of auto
testing, novel aspects of software
under consideration may be
analyzed.

Time
invested

In conventional automation, even
small changes in the UI needs to be
adjusted in the script as well.

As ML adjusts scripts according
to the variation in the
applications, a large amount of
time does not need to be wasted
in scripting.

Prerequisite
programmin
g skills

Conventional test automation
demands prerequisite technical
skills and knowledge.

Most ML-based tools can be used
with sub-par technical knowledge
or skills.

4. Analysis
Using machine learning in software test automation, software teams are now able to

more effectively maintain and improve the quality of large software systems with a re-
duced cost and human efforts. With ML testing tools, the time required for a software
testing life cycle can be reduced by half without compromising the quality of the software
[10] by making predictions from historical data and enabling the testing and delivery
teams to schedule reviews and walkthroughs accordingly [11]. These tools encompass

Figure 2. Diagrammatic view of TechM’s ML-based tool.

3.5. Comparing Conventional and ML-Based Testing Tools

The comparison (Table 1) is performed by using six standard attributes, i.e., man-
ual labor, test performance, error inaccuracy, test scope, time invested and prerequisite
programming skills.

Table 1. Conventional and ML-based automation: a comparison.

Criterion Conventional Test Automation ML-Based Test Automation

Manual labor More involvement of manual
labor.

Less amount of manual labor
required.

Test performances Needs to be modified through
proactive efforts.

Exhibits the property of
self-healing.

Error and inaccuracy

Because of the high
involvement of man power,
conventional test automation is
prone to a high number of
errors and inaccuracies.

As the machine replaces most
of the human efforts in
ML-based automation, it is
less likely to produce errors or
in accuracies.

Test scope
The aspects or requirement in
the software needs to test
through active endeavor.

During the process of auto
testing, novel aspects of
software under consideration
may be analyzed.

Time invested

In conventional automation,
even small changes in the UI
needs to be adjusted in the
script as well.

As ML adjusts scripts
according to the variation in
the applications, a large
amount of time does not need
to be wasted in scripting.

Prerequisite programming
skills

Conventional test automation
demands prerequisite technical
skills and knowledge.

Most ML-based tools can be
used with sub-par technical
knowledge or skills.

4. Analysis

Using machine learning in software test automation, software teams are now able to
more effectively maintain and improve the quality of large software systems with a reduced
cost and human efforts. With ML testing tools, the time required for a software testing
life cycle can be reduced by half without compromising the quality of the software [10]
by making predictions from historical data and enabling the testing and delivery teams to
schedule reviews and walkthroughs accordingly [11]. These tools encompass self-adjusting
scripts and self-healing properties which lessen the need for human intervention, thus
making the procedure easier for people. It is observed that ML-based tools, due to their
characteristic of learning from understanding, experience fewer inaccuracies and errors in

Eng. Proc. 2022, 20, 12 5 of 6

their run. ML-based tools may not be a perfect solution but they surely have an edge over
the conventional automation tools.

5. Limitations

Since artificial intelligence does offer promising results, it only concentrates on solving
a specific testing problem; this means that there is no readily available overall toolkit
for testing engineers to use. Hence, the complete adaptation of artificial intelligence in
organizations becomes difficult; it is now inevitable that AI will have a substantial impact
on the field of automation testing. We expect that new methodologies and approaches from
an AI standpoint will emerge to tackle the task of software testing.

6. Conclusions and Future Work

The primary purpose of this study was to upsurge the awareness about the prospective
benefits of AI in the field of software test automation. The research clearly concludes that
with AI, the production and release of projects will be much quicker and efficient as it
will allow tests to be developed faster and errors be discovered sooner. If and when code
modifications are made to the application, AI/ML will be able to estimate the likelihood
of a build failing. By learning through our procedures and tests, AI will optimize and
further predict problematic areas requiring further attention from a tester. To conclude,
the development and use of test automations backed by AI is an ideal way forward
for everyone.

Our major effort for future research will be to examine and categorize all existing work
in the field of machine learning and software testing. The information obtained throughout
the categorization process will assist future researchers and engineers in developing a
particular set of guidelines for using ML techniques in the software testing process.

Author Contributions: Conceptualization was performed by B.M.; methodology, L.O. and B.M.;
investigation, S.A.H. and S.F.; writing—original draft preparation, S.A.H.; writing—review and
editing, S.A.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Divya, K.; Mishra, K.K. The Impacts of Test Automation on Software’s Cost, Quality and Time to Market. Procedia Comput. Sci.

2016, 79, 8–15.
2. Mitchell, T.M. Machine Learning; McGraw Hill: New York, NY, USA, 1997; ISBN 0070428077.
3. Jungho, K.; Ryu, Y.; Woo, J.; Hyun-Jeong, S.; Jin-Hee, S. Machine Learning Frameworks for Automated Software Testing Tools: A

Study. Int. J. Contents 2017, 13, 38–44.
4. Yang, X.; David, L.; Xia, X.; Zhang, Y.; Sun, J. Deep Learning for Just-In Time Defect Prediction. In Proceedings of the IEEE

International Conference on Software Quality, Reliability and Security, QRS, Vancouver, BC, Canada, 3–5 August 2015; pp. 17–26.
5. Kamei, Y.; Shihab, E.; Adams, B.; Hassan, A.E.; Mockus, A.; Sinha, A.; Ubayashi, N. A large-scale empirical study of just-in-time

quality assurance. TSE 2013, 39, 757–773. [CrossRef]
6. Han, J.; Kamber, M. Data Mining: Concepts and Techniques, 2nd ed.; Morgan Kaufmann Publishers: Burlington, MA, USA, 2006.
7. Hinton, G.; Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [CrossRef]

[PubMed]
8. Prachi, S.; Mark, L.; Abraham, K. Test Set Generation and Reduction with Neural Networks. Artif. Intell. Methods Softw. Test. 2004,

101–132. [CrossRef]
9. Sumit, M.; Subhankar, M. Usage of Machine Learning in Software Testing. In Automated Software Engineering: A Deep Learning-Based

Approach; Springer: Berlin, Germany, 2020. [CrossRef]

http://doi.org/10.1109/TSE.2012.70
http://doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
http://doi.org/10.1142/9789812794758_0004
http://doi.org/10.1007/978-3-030-38006-9_3

Eng. Proc. 2022, 20, 12 6 of 6

10. Chakraborty, S. How to use AI/ML Systems to Revolutionize Testing And Test Automation? Int. J. Sci. Eng. Res. 2019, 10, 290.
11. UTOR. AI and ML in Testing: How to Make Your Test Automation more Intelligent—UTOR. 2021. Available online: https:

//utor.com/topic/ai-and-ml-in-software-testing (accessed on 1 August 2021).

https://utor.com/topic/ai-and-ml-in-software-testing
https://utor.com/topic/ai-and-ml-in-software-testing

	Introduction
	Literature Review
	Methodology
	Modernization of Automation Testing
	Use of Machine Learning
	Implementing Machine Learning
	Case Study
	Comparing Conventional and ML-Based Testing Tools

	Analysis
	Limitations
	Conclusions and Future Work
	References

