
Master’s thesis

Master’s Programme in Computer Science

Industrial Surveys on Software Testing
Practices: A Literature Review

Kim Bäckström

January 2, 2022

Faculty of Science
University of Helsinki

Contact information

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki,Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/

Faculty of Science Master’s Programme in Computer Science

Kim Bäckström

Industrial Surveys on Software Testing Practices: A Literature Review

Prof. T. Mikkonen, Univ. Lect. A.-P. Tuovinen

Master’s thesis January 2, 2022 43 pages, 35 appendix pages

software testing, industrial surveys

Helsinki University Library

Software study track

A US government agency estimated the national cost of inadequate software testing to be $60
billion annually, and that was 20 years ago. As the role of technology and software has been
rapidly increasing worldwide for decades, it suffices to say that the worldwide fiscal effect of
poor testing practices today is probably “quite a bit“.

An increasing number of industry-focused survey studies on testing have been published world-
wide in recent years, signalling an increased need to characterize the testing practices of the
software development industry. These types of studies can help to guide future research efforts
towards subjects that are meaningful to the industry, and provide practitioners with an oppor-
tunity to compare their own practice to those of their peers and recognize the main improvement
areas.

As no secondary study devoted to these types of survey studies could be identified, the oppor-
tunity was seized to carry out a literature review was to find out what the data from these
studies can tell us when aggregated. The precise topics focused on were the usage of test levels,
test types, test design techniques, test tools and test automation.

Looking at these studies in aggregate tells us about some general trends: unit testing, functional
testing and regression testing are popular everywhere, and also quite popular regardless of the
surveyed population are performance testing and usability testing. The popularity of the other
test levels and test types vary from survey to survey or region to region. Black-box techniques
and experience-based techniques are more popular than white-box techniques. Exploratory
testing, error guessing, use case testing and boundary value analysis are some of the most
popular test design techniques. Much of the industry relies on manual testing over automated
testing and/or have inadequately adopted the usage of testing tools.

ACM Computing Classification System (CCS)
Software and its engineering → Software creation and management → Software verification and
validation

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

Contents

1 Introduction 1

2 Background 3
2.1 Testing concepts and definitions . 3
2.2 Research context . 6

3 Research method 9
3.1 Research questions . 9
3.2 Search process . 10
3.3 Exclusion criteria . 11
3.4 Snowballing . 12
3.5 Data extraction . 13

4 Results 15
4.1 Overview of primary studies . 15
4.2 Test levels . 19
4.3 Test types . 21
4.4 Test design techniques . 23
4.5 Automation and tools . 26

4.5.1 Usage of automation and tools . 26
4.5.2 Usage of specific tools for testing activities 29
4.5.3 How testing tools are acquired . 30

5 Discussion 31
5.1 Analysis . 31
5.2 Research questions revisited . 33
5.3 Research validity . 34
5.4 Future work . 36

6 Conclusions 37

Bibliography 38

A Extracted data

1 Introduction

Software is everywhere, and the primary method of performing quality assurance on soft-
ware is to conduct software testing. Software testing cannot guarantee the absence of
defects, but it can help to prevent them [Int15], and efforts to do so are proven to be
worthwhile time and again, sometimes in spectacular fashion. For instance, a defect in a
trading algorithm cost a company $440 million in 30 minutes [Heu12] and another caused
emergency services to be unavailable to over 10 million people for six hours [Fun14]. For
a more grounded perspective, a likely outdated but often-cited estimate made in 2002 by
the National Institute of Standards and Technology is that the cost of inadequate infras-
tructure for software testing in the US is $59.5 billion [Tas02]. Undoubtedly, this issue is
not specific to the US and as the role of technology and software increases worldwide, so
does the importance of software testing.

This notion is supported by the fact that an increasing number of survey studies that
aim to find out about the testing practices of the software industry are being carried out
worldwide. Characterizing the testing practices of the software development industry pro-
vides a reference point for software professionals in their practice, helps to guide future
research efforts towards subjects that are relevant to the industry, and helps to gauge the
adoption rate of techniques that are of interest in academia. Recognizing the regional
weaknesses in software testing practices could also be used as a starting point for discus-
sions on curricular shortcomings, or the need to shift in attitudes on the organizational
level.

Surprisingly, no previous secondary study devoted to the subject of the testing practices
of the software industry seems to exist. So, while conducting another survey on the topic
would be a viable way to contribute, perhaps even more warranted is a secondary study on
the subject. Therefore, the contribution of this thesis is a literature review on the topic to
find out what looking at existing data in aggregate tells us about the testing practices of
the industry. Specifically, the focus is on a set of topics that surveys on testing practices
are likely to cover: the usage of test levels, test types, test design techniques, test tools
and test automation.

The remainder of this thesis is structured as follows. First, background information is
discussed in chapter 2. Chapter 3 presents the research methods, i.e., how the literature

2 CHAPTER 1. INTRODUCTION

review was carried out. The results are presented in chapter 4, followed by discussion in
chapter 5. Finally, the conclusions are presented in chapter 6.

2 Background

This chapter consists of two parts: first, we establish relevant testing concepts and defini-
tions in section 2.1 and then the research context is discussed in section 2.2.

2.1 Testing concepts and definitions

There are competing standards when it comes to basic software testing terminology: the
Engineering Body of Knowledge (SWEBOK) [ISO15], the International Software Testing
Qualifications Board Certified Tester Foundation Level Syllabus (ISTQB-CTFL) [Int18]
and the international standard on software testing ISO/IEC/IEEE 29119 [ISO13]. It is
therefore particularly important in this work to establish testing concepts and terminology
in order to provide a cohesive structure when presenting the results and to avoid confu-
sion. The definitions presented are not strictly based on any one of the aforementioned
authoritative sources, but draw from each.

Testing is a group of activities performed to assess the quality of software. Testing always
occurs on one of four test levels, namely

• unit testing (or component testing) if the target is an isolated software component,

• integration testing if the target is an isolated subset of a software system,

• system testing if the target is an entire software system, or

• acceptance testing if the target is an entire software system and the goal is to
assess whether a complete software system is acceptable to the end-user [ISO13;
ISO15; Int18].

Testing activities can be grouped into one or more test types based on their objectives.
Oftentimes, the objective is to assess a specific quality characteristic of software. A fairly
comprehensive, but non-exhaustive list of test types that assess quality characteristics
from ISO/IEC/IEEE 29119 consists of

• functional testing, which evaluates how well the functionality of a product meets
explicit and implicit requirements of the product under specific conditions,

4 CHAPTER 2. BACKGROUND

• compatibility testing, which evaluates how well a group of components or systems
interoperate on the same software environment or hardware,

• usability testing, which evaluates how easily and satisfactorily specific users, in a
specific context, are able to use the product for its intended purpose,

• reliability testing, which evaluates how well a component or a system functions in
specific conditions over a period of time,

• security testing, which evaluates how well access to data and data operations is
restricted only to persons or systems with authorization to do so,

• maintainability testing, which evaluates how easily changes can be made to the
product,

• portability testing, which evaluates how easily a component or system can be
made available on other hardware, software or in other environments, and

• performance testing, which evaluates the performance of a product in relation to
the resources used under specific conditions [ISO13].

Practitioners will often refer to the group of test types that focus on a specific quality
characteristic excluding functional testing as non-functional testing [ISO13]. Some
notable test types which are not tied down to a specific quality characteristic are:

• regression testing, to re-test already tested software to assess whether changes to
software have had any undesirable effects,

• user acceptance testing (UAT), a form of acceptance testing carried out by the
customer, to verify that the software meets their requirements,

• alpha testing, a form of acceptance testing feedback is obtained by allowing a
limited number of users to use the software before it is released. Useful for off-the-
shelf software, where UAT is not applicable [Int18].

As the objectives of testing are innumerable, so is the number of test types. Others may
come up in the results but are likely not significant enough to warrant discussion. It should
be noted that a test type can be applicable to more than one test level. For example, both
functional testing and performance testing could be conducted on both the integration

2.1. TESTING CONCEPTS AND DEFINITIONS 5

and system test levels in one project. Acceptance testing, under the given definitions,
could also be considered as a special kind of test type that only applies to the system test
level. Defining test level and test types in such a way helps to accommodate studies that
use the SWEBOK model, under which acceptance testing is likened to test types instead
of test levels [ISO15]. Specific forms of acceptance testing, e.g. UAT and alpha testing
are discussed as test types.

In testing, there is the matter of how test cases are derived. The techniques used for this
purpose are called test design techniques. Test cases can be derived using specifications
(e.g. requirements), structure (e.g. source code), or experience. Using specifications to
identify test cases is called black-box testing, and using source code is called white-
box testing. Definitions have been omitted for brevity; refer to SWEBOK for definitions
[ISO15]. Table 2.1 lists various test design techniques.

Table 2.1: Non-exhaustive list of test design techniques.

White-box Black-box Experience-based

Control Flow Equivalence partitioning Ad hoc testing
Data Flow Boundary value analysis

(BVA)
Exploratory testing

Error guessing Pairwise Testing Error guessing
Mutation testing Random testing
Decision Tables

The international standard on software testing ISO/IEC/IEEE 29119 uses three layers
to describe software testing in the context of organizations and projects [ISO13]. First,
there is the organizational layer, the context of which is made up of rules, regulations,
standards and laws. In mature organizations, formalized testing policies and strategies
may be produced based on these inputs. The organizational layer provides context, along
with the project context, for the middle layer, which is the project layer. This layer
may also include some formal planning and strategizing. It is also the layer where it
is determined whether a sequential development model like the waterfall model or an
iterative model like agile is used, among other things which influence day-to-day testing
activities in the project. Thus, the project layer provides context for the final layer, the
testing layer, which deals with the nuts and bolts of testing such as test levels, test types,
test design techniques, test completion criteria and test automation.

6 CHAPTER 2. BACKGROUND

It is likely a reasonable assumption that trends observed in the testing layer are often
results of trends in the project layer. For instance, the transition towards agile practices
and continuous integration has almost certainly increased the amount of regression testing
conducted. However, there is no intention of exploring which factors have shaped testing
practices in the context of organizations and projects; the goal is to observe industry
trends and patterns of the software testing layer in isolation.

2.2 Research context

There are a few approaches to learning about the testing practices used in the software
industry. One approach is to analyse publicly available data, such as job postings [Kas+21;
CLR20; FS19] and public repositories [LSM20]. Using this approach allows for an efficient,
automated data gathering process but can be limited by the data which is available and the
lack of structure can cause complications. The more common alternative involves reaching
out to members of the industry directly by means of a questionnaire survey, interviews, or
a combination of the two. Broadly speaking, these types of studies can be categorized into
qualitative and quantitative studies. Qualitative studies on the topic, usually case studies,
can provide detailed insight on the testing process of a company or handful of companies,
but their results are usually not generalizable to the software industry as a whole as the
number of subjects is small. In order to answer questions such as “how popular is the
software testing practice X?“, perhaps the best tool for the job is industrial surveys.

With surveys, there is the question of geographical coverage. To provide a generalizable
answer to a question about the popularity of a testing practice, sampling would need to
be done on developers and testers all around the world. Such surveys can and have been
done [IST16; IST18], but much more common are surveys targeting a specific country or
region, no doubt because it is more practical to conduct surveys on a smaller scale. This
limitation is, however, a common source of criticism for industrial surveys, and is a factor
in why industrial surveys can be difficult to get published [TR13]. The aim of this thesis
is to learn about the testing practices used in the industry by looking at industrial surveys
in aggregate. One motivation for this study is that the limited geographical coverage of
any individual paper can be mitigated to a degree by being reduced to a single reference
point amongst many.

While a brief discussion on existing work is standard practice for any study, in one survey
study on software testing practices an abridged literature review was carried out prior to

2.2. RESEARCH CONTEXT 7

conducting the survey [Dia+17]. The aggregated results of their review that are most rele-
vant to this study were that unit testing is the most popular testing level and that manual
testing is performed more often than automated testing. To the best of my knowledge,
this thesis is the first study that is primarily a literature review focusing on the software
testing practices of the industry, questionnaire survey-based or otherwise.

Most research efforts in software testing are not industry-centric, instead, they are directed
towards topics that by most indications are disconnected from the mainstream software
industry and almost seem doomed to remain as such for perpetuity. A prime example of
this is mutation testing. The method has been an increasingly prominent research area
since its inception over 50 years ago [DS78; JH11], to the point of becoming one of the
most actively researched software testing methods, with seven secondary studies covering
the topic as of 2016 [GM16]. At a cursory glance, the number appears to have at least
doubled in the last five years [Pap+19; SSL17; Piz+19; FPO18; GGS17; JSR17; ZPZ18;
PV19; DA16]. Despite all the research, the issue of industry adoption continues to be
offhandedly recognized even in the most recent research on the topic [Pet+21; BW21].
ISTQB, the de facto body of software testing certification makes no mention of mutation
testing in any of their syllabuses according to the ISTQB Glossary [IST21a]. Mutation
testing is not an isolated case in this regard. Search-based testing, combinatorial testing,
symbolic execution and random testing have all been the subject of much research [GM16],
yet they are only mentioned in passing by the material of the ISTQB, if at all. In fairness,
ISTQB devotes a syllabus for model-based testing, which was covered by fifteen secondary
studies as of 2016, more than any other testing method [Int15; GM16]. As illustrated by
Figure 2.1, according to Google Trends, interest in model-based testing has nevertheless
remained stagnant and on the same level as mutation testing for over 10 years. The points
presented here are meant to be taken as indicators, not hard evidence. Industrial surveys,
however, might be able to more reliably tell us about the adoption rate of these highly
researched software testing practices.

8 CHAPTER 2. BACKGROUND

Figure 2.1: Interest over time on various software testing topics. Integration testing, which
arguably is an industry staple, is included as a reference point. Data source: Google Trends
(https://www.google.com/trends).

3 Research method

The research method used in this thesis is the (systematic) literature review. The steps
that are taken largely draw from the guidelines presented in [Kee+07], although strict
adherence has not been attempted, particularly, a quality assessment of the primary studies
was not made. This field of research does not seem to be broad and mature enough for
statistical analysis, an activity that would call for full adherence. Instead, a somewhat
more lenient approach was taken, as this work is more in the realm of general, high-
level observations of possible trends and patterns. More on this topic is available in the
discussion on research validity (section 5.3).

Each section that follows corresponds to a consecutive step taken in the process conducting
this study prior to synthesizing the results: formulating research questions (section 3.1),
seeking out potential primary studies (section 3.2), filtering irrelevant primary studies
(section 3.3), snowballing (section 3.4) and data extraction (section 3.5).

3.1 Research questions

The basic research question of this study is:

• RQ: What does descriptive quantitative data from questionnaire surveys tell us about
the testing practices of the general software industry?

Reviewing all aspects of testing would be too laborious for a master’s thesis; instead, a
few key topics which are interconnected have been selected, and consequently, some more
granular research questions are formulated: In the industry,

• (RQ1) How broadly are the test levels used, and what is their relative popularity?

• (RQ2) What are the most popular test types?

• (RQ3) What are the most popular test techniques?

• (RQ4) What is known about the usage of test tools/automation?

10 CHAPTER 3. RESEARCH METHOD

3.2 Search process

Primary studies were identified using the following electronic databases relevant to com-
puter science:

• ACM Digital Library (Association for Computing Machinery)

• IEEE Xplore (Institute of Electrical and Electronics Engineers)

• Scopus

After a few preliminary rounds of the search process, the following search terms were
settled upon:

• software AND

• testing AND

• practices AND

• survey AND

• industry OR industrial OR organization OR company OR practitioner OR profes-
sional

For each database, a search query was constructed in such a way that each group of
keywords had to match either the title, abstract or keywords of a study. This is the
default behaviour in IEEE Xplore and Scopus. The keywords have been constructed using
the high-level research question for this study, and not the more specific ones, i.e., using
keywords such as "tools", "automation" or "unit testing". The reasoning behind this is that
based on early rounds of the search process, had this been done, it would be more likely
for relevant literature to not be found as the terms are not necessarily used in the title,
abstract or keywords of a survey study that broadly observes testing practices. While this
led to a more laborious search process, it also provided some flexibility with regard to
adjustments to the granular research questions.

The databases were queried on 8.11.2021 and the search queries used are presented in
Table 3.1. The number of results for each database is presented in Table 3.2.

3.3. EXCLUSION CRITERIA 11

Table 3.1: The search queries used for each database.

Database Search query

ACM (Title:(software) OR Abstract:(software) OR Keyword:(software)) AND
(Title:(testing) OR Abstract:(testing) OR Keyword:(testing)) AND (Ti-
tle:(practices) OR Abstract:(practices) OR Keyword:(practices)) AND
(Title:(survey) OR Abstract:(survey) OR Keyword:(survey)) AND (Ti-
tle:(industry OR industrial OR organization OR company OR practitioner
OR professional) OR Abstract:(industry OR industrial OR organization OR
company OR practitioner OR professional) OR Keyword:(industry OR in-
dustrial OR organization OR company OR practitioner OR professional))

IEEE software AND testing AND practices AND survey AND (industry OR in-
dustrial OR organization OR company OR practitioner OR professional)

Scopus TITLE-ABS-KEY(software AND testing AND practices AND survey AND
(industry OR industrial OR organization OR company OR practitioner OR
professional)) AND (LIMIT-TO (SUBJAREA, "COMP"))

Table 3.2: Number of studies per database.

Database Number of results

ACM 251
IEEE 186
Scopus 257

Total 694

3.3 Exclusion criteria

The following exclusion criteria were used to narrow down the set of papers to only the
ones relevant to this research:

• EC1: Published before 2001

• EC2: Published in a language other than English

12 CHAPTER 3. RESEARCH METHOD

• EC3: Is not a survey study with a sample size of at least 20

• EC4: Has an insufficient focus on testing practices of the general software industry

Applying the exclusion criteria yielded a total of 16 papers. The intermediate number
of results after removing duplicates and applying each exclusion criteria are presented in
Table 3.3.

Table 3.3: The process of narrowing down the selection of papers.

Phase Number of results

Initial 694
Removal of duplicates 495
Applying EC1 448
Applying EC2 445
Applying EC3 & EC4 16

3.4 Snowballing

Backwards snowballing is the process of checking the references of a set of seed papers
for potential sources to be included in a review. In forwards snowballing, the referees are
checked instead. Snowballing can be repeated iteratively on the additional sources until
no new sources are found.

To improve the coverage of the review, both forwards and backwards snowballing was
applied to the set of 16 papers. On the first iteration, two survey studies published
in scientific venues which passed the exclusion criteria were identified. The snowballing
process was terminated after a second iteration of snowballing, as no new papers were
found. In addition, the backward snowballing process allowed for some grey literature to
be included, specifically, surveys published by the ISTQB or its member boards. Fifteen
such surveys are available on the ISTQB website [IST21b], of which nine passed the
exclusion criteria. Not all of them were reachable via direct snowballing, but they were
included nevertheless due to the high relevance. Table 3.4 summarizes the snowballing
process.

3.5. DATA EXTRACTION 13

Table 3.4: The snowballing process.

Set Number of results

Initial papers 16
Scientific literature added via snowballing 2
ISTQB surveys added 9
Final number of surveys included in review 27

3.5 Data extraction

The following data was extracted for each paper:

• Study metadata

– Title

– Year

– Author(s)

– Reference

• Survey metadata

– Year(s) conducted

– Number of responses

– Target population (individuals, organizations...)

– Region/scope

• Quantitative findings pertaining to the usage of

– test levels (RQ1)

– test types (RQ2)

– test design techniques (RQ3)

– automation and tools (RQ4)

14 CHAPTER 3. RESEARCH METHOD

The extracted data is available in full in Appendix A. If otherwise pertinent data was not
extracted for some reason, e.g., due to suspicion of faulty data or misreporting, it was noted
with justifications. For Likert scale questions, the mode and median were extracted as they
best measure the central tendency for Likert data [BB12]. During data extraction, several
times an opportunity arose to convert Likert data into binary data with the intention of it
comparing to data from other studies obtained using a yes/no or multiple-choice question.
For instance, from a Likert scale question with options ranging from “never“ to “always“,
one could infer “never“ to be equivalent to “no“, and the remaining options to be equivalent
to “yes“. This was initially done in this study, but it was subsequently undone as it quickly
became apparent the data obtained this way were consistently outliers, suggesting that
the inference is not correct.

4 Results

In this chapter, the results of this study are presented. First, an overview of the studies
and the respective surveys is presented in section 4.1. The remaining four sections of this
chapter each correspond with the research question of this study, starting with test levels
in section 4.2, followed by test types in section 4.3, test design techniques in section 4.4
and lastly automation and tools in section 4.5.

4.1 Overview of primary studies

Table 4.1 provides an overview of the studies included in this literature review. Something
worth noting is the steady increase in the number of studies on the topic; even though
20 years’ worth of literature is under examination, around half the studies have been
published in just the last 5 years.

16 CHAPTER 4. RESULTS

Table 4.1: Basic information about the studies included in the review.

Id Year Author(s) Title Reference

1 2004 Geras et al. A survey of software testing practices
in Alberta

[GSM04]

2 2004 Ng et al. A preliminary survey on software test-
ing practices in Australia

[Ng+04]

3 2010 Garousi et al. A replicated survey of software testing
practices in the Canadian province of
Alberta: What has changed from 2004
to 2009?

[GV10]

4 2010 Causevic et al. An industrial survey on contemporary
aspects of software testing

[CSP10]

5 2011 Haberl et al. Software Test in Practice [Hab+11]
6 2012 Lee et al. Survey on software testing practices [LKL12]
7 2012 Turkish Testing Board Turkey Software Quality Report 2011-

2012
[Tur12]

8 2013 Garousi and Zhi A survey of software testing practices
in Canada

[GZ13]

9 2013 Turkish Testing Board Turkey Software Quality Report 2012-
2013

[Tur13]

10 2014 Daka and Fraser A survey on unit testing practices and
problems

[DF14]

11 2014 Turkish Testing Board Turkey Software Quality Report 2013-
2014

[Tur14]

12 2015 Garousi et al. A survey of software engineering prac-
tices in Turkey

[Gar+15a],
[Gar+15b]

13 2016 ISTQB ISTQB® Worldwide Software Testing
Practices Survey 2015-16

[IST16]

14 2016 Turkish Testing Board Turkey Software Quality Report 2015-
2016

[Tur16]

15 2017 Dias-Neto et al. Toward the characterization of soft-
ware testing practices in South Amer-
ica: looking at Brazil and Uruguay

[Dia+17]

4.1. OVERVIEW OF PRIMARY STUDIES 17

16 2017 Kassab et al. Software Testing: The State of the
Practice

[KDL17]

17 2017 Felderer and Auer Software quality assurance during im-
plementation: Results of a survey in
software houses from Germany, Austria
and Switzerland

[FA17]

18 2018 Hynninen et al. Software testing: Survey of the indus-
try practices

[Hyn+18]

19 2018 Wang and Galster Development processes and practices in
a small but growing software industry:
A practitioner survey in New Zealand

[WG18]

20 2018 ISTQB ISTQB® Worldwide Software Testing
Practices Survey 2017-18

[IST18]

21 2018 Turkish Testing Board Turkey Software Quality Report 2017-
2018

[Tur18]

22 2019 Quesada-López et al. A survey of software testing practices
in Costa Rica

[QHJ19]

23 2019 Turkish Testing Board Turkey Software Quality Report 2018-
2019

[Tur19]

24 2020 Latif et al. A preliminary survey on software test-
ing practices in Khyber PakhtunKhwa
region of Pakistan

[LR20]

25 2020 Vukovic et al. An empirical investigation of software
testing methods and techniques in the
province of Vojvodina

[Vuk+20]

26 2021 Junior et al. Experiences and Practices in GUI
Functional Testing: A Software Prac-
titioners’ View

[Jun+21]

27 2021 Carlos and Ibrahim Practices in software testing in
Cameroon challenges and perspectives

[MI21]

Table 4.2 provides some additional data about the survey conducted in each study. Most
surveys were conducted around 1-2 years before the publication of the study. Around
two-thirds of the studies target individual practitioners, and the rest target organizations
and companies. The median number of responses is around 100.

18 CHAPTER 4. RESULTS

Table 4.2: Basic information about the surveys.

Study
id

Year(s)
conducted

Responses
analyzed

Target population Region/scope

1 2002 60 Software organizations Alberta, Canada
2 2002-03 65 Software organizations Australia
3 2009 53 Software organizations Alberta, Canada
4 2009 83 Software companies Europe
5 2011 1623 Software professionals Central Europe
6 Unknown 24 Software professionals Major companies
7 2011-12 Unknown Software professionals Turkey
8 2010 246 Software practitioners Canada
9 2012-13 Unknown Software professionals Turkey
10 2013 171 Software developers Worldwide
11 2013-14 Unknown Software professionals Turkey
12 2013 202 Software practitioners Turkey
13 2015 3200 Software professionals Worldwide
14 2015-16 Unknown Software professionals Turkey
15 2015 150 Testing practitioners Brazil & Uruguay
16 2015 167 Software professionals USA
17 2015 57 Software houses Central Europe
18 2017 33 Software organizations Finland
19 2017-18 101 Software developers New Zealand
20 2017-18 2000 Software professionals Worldwide
21 2017-18 300 Software professionals Turkey
22 2018 92 Software professionals Costa Rica
23 2018-19 Unknown Software professionals Turkey
24 2018 70 Software organizations Khyber PakhtunKhwa,

Pakistan
25 Unknown 83/24 Software profession-

als/Software organiza-
tions

Vojvodina, Serbia

26 2021 222 Testing professionals Brazil
27 Unknown 30 Software companies Cameroon

4.2. TEST LEVELS 19

Figure 4.1 visualizes the geographical coverage of the studies. The most covered regions
are Turkey (7 studies), largely thanks to the surveys carried out by the Turkish Testing
Board (TTB), and Canada (3 studies). The coverage from five studies is not included
(or only partially included) because the geographical distribution was not reported. This
includes two worldwide ISTQB studies, which both received responses from around 90
countries 13 20.

Figure 4.1: The geographical coverage of the primary studies.

4.2 Test levels

Each of the test levels tend to be used more than two-thirds of survey respondents, but the
results are only consistent for unit testing; see table 4.3 for the raw data on the popularity
of test levels, and table 4.4 for basic statistics about the results. It should be noted that
no claims are being made about the statistical significance of this data; the quality of the
underlying studies is not necessarily sufficient for meta-analysis, and the studies have not
been weighted. The purpose of displaying statistics is only to aid in the digestion of the
findings.

20 CHAPTER 4. RESULTS

Table 4.3: The findings on the usage of the test levels in the reviewed studies. Whole numbers represent
the percentage of respondents who indicated that they conduct testing on the test level. Fractions loosely
represent the result of a Likert scale question (median value; 0 (’Never’) is lowest).

Study id 1 3 4 8 12 15 16 17 19 22 27
Test level

Unit 92 96 5/7 80 2/4 76 72 68 73 79 73
Integration 37 3/4 82 67 48 81 77
System 92 97 6/7 78 3/4 88 81 26 83 27
Acceptance 80 88 83 72 45 88 27

Table 4.4: Basic statistics on the (non-Likert) findings concerning the popularity of the test levels.

Test type Min Max Mean Median Standard
deviation

Unit 68 96 79 76 9
Integration 37 82 65 72 19
System 26 97 72 82 28
Acceptance 27 88 69 80 23

The popularity of integration testing, system testing and acceptance testing test level
can vary greatly depending on the region. They have each been a low outlier in at least
one study: integration testing was by far the least popular test level in Alberta 3 and
system testing was least popular by some margin in New Zealand 19. System testing and
acceptance testing were both clearly less popular than unit testing and integration testing
in Cameroon 27.

The positions of survey respondents may have a non-negligible impact on the outcomes
of survey studies on software testing practices such as test level usage. One study re-
ported their figures on the popularity of test levels for respondents in management po-
sitions and technical respondents separately, with 72% of respondents in management
positions responding affirmatively to using test levels while the corresponding figure for
non-management respondents was 92% 1. It was suggested the difference may be at-
tributed to a lack of communication between technical and managerial project members,
as managerial respondents may simply not be aware of the more technical testing levels
such as unit testing being performed. To mitigate this issue, the values for whichever figure

4.3. TEST TYPES 21

was higher was reported in table 4.3, as they were presumably more accurate. However,
many of the reviewed studies have both technical and managerial respondents, and may
have been affected by this problem.

Even with a relatively high number of primary studies covering the topic, the geographical
coverage of data on test level usage is lacking. No broad surveys (e.g. ISTQB surveys)
have explored the topic, and for instance, not a single data point exists on the usage of
system testing in the entire Eurasian mainland. The data that does exist is somewhat
skewed towards North America (5/11 studies).

4.3 Test types

The test types which are consistently shown to be popular are, in decreasing order of
popularity, functional testing, regression testing, performance testing and usability testing.
See table 4.5 for the raw data on the popularity of test types, and table 4.6 for basic
statistics on the most prominent test types. The relative popularity of the aforementioned
test types is consistent across the studies, with the exception of study 27, where usability
testing was more popular than regression testing and performance testing. This, combined
with the fact that the variance in the results on these test types is quite low provides some
confidence in accuracy of these results. Although security is regarded as prominent among
survey designers, having the second-highest number of data points, its popularity in the
industry varies greatly depending on the surveyed population. As for the remaining test
types, less data is available, so the results should be interpreted with care. There are
not very many data points for types of acceptance testing, only four for UAT and two
for alpha testing, each hovering around 40-60%. In a few studies, stress testing was used
by 60% of respondents, complementing the findings on performance testing. There are a
dozen “Ility“-test types which do not appear to be in contention for being among the most
popular test types.

22 CHAPTER 4. RESULTS

Table 4.5: The findings on the usage of the test types in the reviewed studies. Types are sorted by
the number of data points, descending. Whole numbers represent the percentage of respondents who
indicated that they conduct testing on the test level. Fractions loosely represent the result of a Likert
scale question (median value; 0 (’Never’) is lowest). Only types reported on by two or more studies are
included.

Study id 1 2 3 4 5 7 8 12 13 15 16 19 20 22 23 27
Test type

Performance 5/7 50 83 56 2/4 63 70 63 61 71 64 43
Security 44 13 26 2/4 39 70 45 71 33 43
Regression 72 69 68 80 83 63 79 53
Functional 6/7 98 78 3/4 91 83 92
Usability 53 47 43 56 44 62 63
Scalability 15 19 16 8 3
UAT 48 56 3/4 66
Stress 63 57 2/4 30
Interoperability 19 21 15 12
Reliability 31 41 22 26
Recoverability 13 10 11 7
Accessibility 29 28 35
Availability 26 20 28
Maintainability 19 19 25
Testability 28 21 34
Operability 18 13 13
Portability 11 11 13
Supportability 8 7 8
Extensibility 5 4 8
Efficiency 26 19
Alpha 40 50

Table 4.6: Basic statistics on the (non-Likert) findings concerning the popularity of of the most prominent
test types.

Test level Min Max Mean Median Standard
deviation

Functional 78 98 88 91 8
Regression 53 83 71 71 10
Performance 43 83 64 63 11
Usability 43 63 53 53 8
Security 13 71 43 43 19

As with test levels, the outcomes of results on the popularity of test types may be affected
by the positions of the respondents. While technical respondents more commonly reported
that test levels were used, managerial respondents were twice as likely to report that their

4.4. TEST DESIGN TECHNIQUES 23

organization conducted usability testing 1. Again, it has been presumed that whichever
figure is higher is also more accurate, and again, the issue may have affected other studies.

There are some quirks when it comes to the usage of the term functional testing in the
literature which sometimes gives pause when aggregating results. The problem is perhaps
best explained with a quote from one of the primary studies, describing a phase in their
survey design:

The goal behind this phase in our survey design was to ensure that the termi-
nology used in our survey was familiar to a reasonable ratio of the audience.
This is since, unfortunately, the software testing terminology used in academia
versus industry can sometimes be slightly different or even confusing, e.g.,
system testing and functional testing. 8

In the study, the terms system testing and functional testing were used interchangeably,
and sometimes “functional/system testing“ was used. One study by the TTB reported
on “functional/regression testing“ 7, and another study reported on “functional black-
box system testing“ 4. As the relatively high popularity of functional testing is a fairly
uncontroversial finding, the general confusion around the term, and the tendency to have
it attached to other qualifiers is not necessarily a problem when interpreting the results,
but may be worth noting nevertheless.

4.4 Test design techniques

Before presenting the findings on the popularity of test design techniques, it should be
noted that the results are somewhat less clear than those pertaining to test levels and test
types. This is largely because the concept of test design techniques and the terminology
used to describe test design techniques is less established that of test types and test levels.
It is not uncommon for studies to report on test design techniques which are not recognized
by SWEBOK [ISO15] or the ISTQB Glossary [IST21a], e.g. “symbolic analysis“ 2. As an
example of inconsistency in terminology, it is probable that the following terms which have
been used to describe or label data on the same technique: “Equivalence“, “Equivalence
classing“, “Equivalence partitioning“ 5 11, “Category partitioning“ 9 12, “Equivalence par-
titioning“ 20, “Equivalence class partitioning“ 25 and “Partitioned analysis“ 27. It is worth
considering whether the respondents to a particular survey have necessarily been aware

24 CHAPTER 4. RESULTS

of the specific term used in the survey. Data on specific techniques has been grouped
somewhat conservatively so that this can be accounted for, particularly for outliers.

The data on the popularity of test design techniques, presented in table 4.7, suggests
that experience-based techniques and black-box techniques are more popular than white-
box techniques. In only two instances did over 50% of respondents indicate that they
use white-box test design techniques 5 25, and in each instance black-box techniques and
experience-based techniques were more popular when data was available. Not in a single
study was a white-box technique most popular. It is difficult to tell from this data whether
experience-based techniques or black-box techniques are more popular.

As for individual test design techniques, the data is quite scattered and there is not
enough data on many techniques to give a definitive answer. The individual techniques
which somewhat stand out as popular are error guessing, exploratory testing, use case
testing and boundary value analysis.

4.5. AUTOMATION AND TOOLS 25

Table 4.7: Summary of findings on the usage of the test design techniques from various studies. Whole
numbers represent the percentage of respondents who indicated that they use the test design technique.
Fractions loosely represent the result of a Likert scale question (median value; 0 (’Never’) is lowest).

Study id 1 2 3 4 5 8 10 11 12 13 15 16 20 22 23 25 27

Experience-based 95 38 49

Tester skill 91 91
Error guessing 85 54 37 36 43
Exploratory 5 49 66 81 67 69 42 2/4
Exploratory (w/o objectives) 66
Exploratory (w/ objectives) 33 33
Fault attack with defect checklists 22
Attacks 22 10 9 13

Black-box 45 6/7 97 78 92

Customer requirements 72 78
Functionality testing 82
Use case testing 77 76 71 73 69
User story testing 61
Model-based testing 15 22
Checklist based 60 54 50 61
Risks 43 20
Cause effect graphs 3 10 24
Out of range 52 47
Boundary values 28 45
Boundary value analysis 68 28 41 24 52 38 60
Decision tables 10 8 33 32 22 29 26
Equivalence partitioning 5 16 61 24 16 24 34 36 25 22
Partitioned analysis 13
Random testing 39
State transition testing 38 24 21 21
States 17 22
Pairwise testing 15 10 13 13 9
Combinatorial test techniques 49
Classification tree method 15 11 7 6 15

White-box 25 62 22 42 78

Control flow graphs 5 10 45
Data-flow analysis 28
Mutation analysis/testing 5 29 4/6 0/5
Symbolic analysis 0
Statement coverage 42 21 18 22 16 48
Decision/branch coverage 36 21 25 22 53
Condition coverage 23
Path coverage 22
Multiple condition coverage 13
Condition determination coverage 8
Loop coverage 8 55
Source code analysis 33
Code complexity analysis 36

26 CHAPTER 4. RESULTS

4.5 Automation and tools

This section is split into multiple subsections, as the goal was not only to aggregate
the findings on the popularity of automation and tools, but also any other aspects of
automation and tools for which quantifiable data exists. There is a lot of data available
on the subject of automation and tools, with three in every four of the reviewed studies
visiting the subject in some way. This, along with the fact that no two independent studies
seem to approach the subject in the same way in terms of framing, scoping, granularity
or terminology makes it quite challenging to aggregate and categorize results. Being too
strict about only grouping data which is perfectly compatible leads to a poor structure in
presenting results, and does not allow for the benefits of analysing results in aggregate.
Not being strict enough risks comparing totally incompatible data, apples to oranges so to
speak, risking outright invalid analysis. An attempt has been made to find an appropriate
balance in this regard, but it may be advisable to refer to the extracted data in appendix A
or the primary studies themselves if the reader particularly interested in granular findings
than the broad overview given here.

First, findings on the overall usage of automation and tools in testing, as well as the
activities during which automation and/or tools are applied are presented in section 4.5.1.
Then, the results on the usage of specific tools are discussed in section 4.5.2. Finally, the
matter of how testing tools are acquired is discussed in section 4.5.3.

4.5.1 Usage of automation and tools

Studies generally indicate that up two two-thirds of the industry automates testing, as
shown in table 4.8, however, studies also consistently find that the actual number of test
cases which are automated is less than 20%, as shown in table 4.9. In other words, it
would appear that a large chunk of the industry uses no automation at all, and those who
do, generally still mostly rely on manual testing.

4.5. AUTOMATION AND TOOLS 27

Table 4.8: Percentage of respondents using tools or automation in general (second row) to fully or
partially conduct various testing activities (e.g. unit testing, regression testing, static analysis or test
planning).

Study id 1 2 3 6 7 9 13 14 15 16 17 18 19 20 21 22 23 26 27

Automation in general 67 67 62 70 57 40

Test levels

Unit 32 65 26 34 43 57 44 38 12
Integration 11 27 34 46 28
System 22 45 47 27
Acceptance 25

Test types

Regression 26 45 1
Functional/Regression 58
Stress 29 20
Performance 44 43 55 66 49 51 50 21
Security 24 1

Static/dynamic analysis

Static analysis 16 26 37 28 18 24
Dynamic analysis 16 17 16 11

Other activities

Test execution 54 36 70 80 34 70 71 49
Test analysis and reporting 42
Test reporting 26
Test management 33 65 65 70 58
Test case management 40 46
Test planning/management 26
Test planning 48
Test estimation 48 74 62
Test design 13 50 15 44 37
Generating test cases/scripts 31 71 58
Defect management 90
Bug tracking 76 64 81 90 84 72 81 52 82 59
Requirements management 24
Requirements traceability 47 46 31
Code profiling 16

28 CHAPTER 4. RESULTS

Table 4.9: A summary of findings pertaining to the usage of test automation of tools which were not
applicable to table 4.8.

Unit testing is the most automated test level, with most respondents automating 70-
85% of their unit tests. Most respondents automate 15-30% of integration and system
tests. Least automated is acceptance testing 5.

Testers are more likely to use tools than developers. Most (36.6%) testers use test tools
in all projects, while developers typically use them in most (30.0%) projects or some
(28.2%) projects. 5

Respondents typically automate fewer than 20% of their test cases, on average 8 13 20

23.

Respondents ’Frequently’ (mode and median) automated test generation, most com-
monly for finding crashes and undeclared exceptions (41%), exercising assertions in
code (38%) or exercising parameterised unit tests (38%). 5

Respondents ’Sometimes’ (median) used automated tools for both code inspections and
static code analysis. Respondents ’Seldom’ (mode and median) used test automation
12.

Over 50% of respondents do not use any automation when conducting GUI tests, and
less than 10% use automation exclusively 26.

The number of respondents using automation/tools when conducting any of the test lev-
els is typically below 50%. With the exception of unit testing, results on the usage
tools/automation per test-level is fairly scarce and inconsistent so not many other reli-
able observations can be made from the data. As for test types, only performance testing
stands out as typically being automated by around 50% of respondents across many stud-
ies. Between static analysis and dynamic analysis, both activities which require tools,
the former is more popular but neither is usually used by over one-third of respondents.
Bug tracking stands out as being the activity for which tools are used the most, typically
by around two-thirds of respondents or more. Also somewhat popular is the usage of
tools/automation for test management and test execution. For other activities, the data
is too scarce to make meaningful inferences.

4.5. AUTOMATION AND TOOLS 29

4.5.2 Usage of specific tools for testing activities

Results on the popularity of testing tools are scarce, and almost any statement made on
the topic is only backed by an individual data point, or can be met with counter-evidence.
Two studies conducted in Canada found the unit testing frameworks JUnit (for Java) and
NUnit (for C#) to be the most popular testing tools, with more than half of respondents
using one or the other 3 8. The only additional data on these tools from these studies
comes from a 2021 study in Cameroon, which found that of those who automate testing,
only 13% of respondents used JUnit, which is particularly surprising considering that two-
thirds of the respondents used Java and 74% of respondents conduct unit testing 27. This
same study instead found Selenium, a test automation tool for web applications, to be
the most popular tool, used by around 40% of the industry, a finding backed up by another
recent study focusing on GUI testing 26. This study found IBM rational testing tools
to only be used by 1% of respondents, however, in two studies earlier studies it was used
by a respectable chunk of respondents, 20% 3 24. Other highly-scoring (used by 10% of
respondents or more) testing tools for which only an individual data point is available are
Appium (20.95%) 26, FitNesse (17%) 3, Sonarqube (15%) and findbugs (10%) 27. The
study on GUI testing queried respondents about the tools they used for reporting bugs.
Kanban (not a specific tool) scored highest, followed by Jira and Slack.

The lack of data on the topic of specific tool usage may be a consequence of the difficulty of
designing a question on the topic of specific test tools, as a lot of tools exist and some effort
has to be put into enumerating a reasonable set of options. One of the reviewed studies
avoided this issue by using an open-ended question, asking for specific names of testing
tools, and then simply reporting the raw responses 4. Quantifiable inferences about the
popularity of tools drawn from this data would likely be inaccurate because respondents
may have trouble remembering all the tools used or their names, or understanding the
question, as illustrated by some of the responses:

• “Two tools named something with "coverage" and "perform" (cannot remember the
company behind)“

• “change control, bug tracking, test case management, etc., etc.“

• “Proprietary in most cases.“

30 CHAPTER 4. RESULTS

4.5.3 How testing tools are acquired

The little data that is available on the subject of how testing tools are acquired suggest that
both commercial and open-source tools are commonly used, and that developing custom
tools is not uncommon, while out-sourcing the development of testing tools is. 2004 study
in Australia found that the most common way of acquiring testing tools was to purchase
existing commercial products (68%). Some developed their testing tools in-house (14%)
and one respondent out-sourced the development of their testing tools (2%) 2. The study
makes no mention of how the remaining respondents (16%) acquired tools, although later
studies would suggest that they were probably using open-source tools. A 2010 study in
Alberta noted that both commercial and open-source tools are common; looking at the
raw data for individual tools would suggest that open-source tools were more commonly
used among respondents 3. A 2020 study in Pakistan found that using open-source tools
was slightly more common than using commercial tools (36% vs. 33%), and that one in
four respondents developed tools for testing in-house 24. Another study reported that 17%
of respondents develop custom testing tools 27.

5 Discussion

This chapter begins with an analysis of the results (section 5.1), followed by revisiting the
research questions (section 5.2), then a discussion on research validity (section 5.3), and
ends with some thoughts on future work (section 5.4).

5.1 Analysis

Encouragingly, many of the surveyed populations have widely adopted most of the test
levels, however, the comparatively low adoption rates of certain test levels in certain
regions, e.g., integration testing in Alberta 3, system testing in New Zealand 19 and system
testing and acceptance testing Cameroon 27 is puzzling. A quick investigation did not
reveal any glaring methodological issues in the studies which could explain the outliers,
except perhaps the low sample size (30) of the last study; and even in this case, there is
not much evidence against the phenomenon being real, considering that all of the other
results the popularity of system testing and acceptance testing come from outside the Afro-
Eurasian mainland, so there is not much to compare the result to. A deeper investigation
might reveal that the source of these outliers are some forms of bias in the studies, however,
entertaining the possibility that the reported phenomenons are real, it is surprising how
the impact of regional culture could be so great as to make one region reliant on one test
level while overlooking another, and have the situation reversed in another region.

It stands to reason that the primary concern when developing software is that its function-
ality works as intended, so the result that functional testing is most popular likely does
not come as a surprise to anyone. The popularity of regression testing speaks to that the
industry mostly recognizes the high risk of defects being introduced when making changes
to software. Then again, in many surveys, some one-third of respondents did not conduct
regression testing. Either this means that the surveyed populations are creating a lot of
software that is never updated (“shelfware“), or large portions of these industries are un-
necessarily vulnerable to introducing defects when changing software. If the latter is the
case, then there is room for improvements to be made in the general know-how of prac-
titioners (i.e. by means of better education/training), and/or the resources allocated to
testing (i.e. by means of shifting organizational attitudes) in many regions. The fact that

32 CHAPTER 5. DISCUSSION

around half or more of the industry performs performance testing and usability testing is
an encouraging result, particularly considering that many of those who do not probably
aren’t exposed to performance or usability issues due to the nature of the software in
the first place. It is somewhat interesting how the relative popularity of the previously
discussed test types does not seem heavily dependent on the surveyed population while
for security testing and some of the test levels it does.

It is not too surprising that experience-based techniques and black-box techniques are
more popular than white-box techniques, because white-box techniques such as those
based on code coverage are only available to developers, and using them requires adopting
specialized tools. Experience-based techniques and black-box techniques can be conducted
by people without programming experience and typically do not require using specialized
tools, so the threshold for adopting them is low.

Considering the ease with which unit tests can be written using open-source libraries like
JUnit in a modern development environment, it is somewhat surprising that many still
rely on manual testing, even on the unit test level. Perhaps it is worth considering what
the automation of a testing activity like unit testing really means. It is clear that in a
theoretical project where unit tests are created automatically and executed automatically
(e.g. using continuous integration), unit testing has been automated. It is also quite clear
that in another theoretical project, where a custom-made utility that requires manual
inputs and observation of outputs is used to test a software component, unit testing is
performed manually. However, there is a whole lot of ground between the two extremes:
what about a theoretical project where tools are used to generate test cases automatically,
which are then implemented manually using a unit testing framework that automates the
comparison of expected outputs and actual outputs, and the automatic execution of all
unit tests can be triggered manually? It may even be conceivable that the threshold for
responding affirmatively to a question about the automation of unit testing is increasing
over time, e.g., due progress is made in tools for automatic unit test generation. This is
all to say that questions on the topic of automation are often too vague to really know
what the underlying practices look like. Perhaps replacing questions about automation
with questions on the usage of specific tools would be more beneficial.

5.2. RESEARCH QUESTIONS REVISITED 33

5.2 Research questions revisited

Broadly speaking, all test levels are broadly used (RQ1). More specifically, the popularity
of the test levels depends on the surveyed population, with the exception of unit testing
which is consistently used by over two-thirds of respondents. The other test levels tend
to be as popular or even more popular than unit testing, however, in some regions one or
two test levels are used by as little as one-quarter of respondents, and there isn’t a clear
pattern as to which of the latter three test level ends up being a low outlier. As for the
relative popularity of the test levels, the answer depends on surveyed population, and no
generalizable answer can be given. For instance, even though the mean result for unit
testing is fourteen percent higher than that of integration testing and the median result
is higher as well, more times than not, integration testing was the more popular test level
of the two.

The most popular test types in decreasing order of popularity are functional testing,
regression testing, performance testing and usability testing (RQ2). Less consistently
popular is security testing.

Results on the popularity of test design techniques are less clear, however, it is apparent
that black-box test design techniques and experience-based test design techniques are
more popular than white-box test design techniques (RQ3). Exploratory testing, error
guessing, use case testing and boundary value analysis are some of the most popular test
design techniques. Other techniques may be quite popular as well, but if this is the case,
the fact has been obscured by the lack of conceptual and terminological consistency across
the primary studies.

Typically, around two-thirds of survey respondents use tools to automate testing activities,
however, fewer than 20% of test cases are automated (RQ4). None of the test levels stands
out in terms of the level of automation; automation tools are typically used less then 50%
of the time for each test level. Tools are quite often used for performance testing, test
execution and bug tracking. Specific test tools which stand out as popular are NUnit,
JUnit, selenium and IBM rational, although not much data exists on the topic as one
might hope. Both commercial and open-source tools are common, and usually a small
percentage of respondents develop their own tools.

These are only some of the things that descriptive data from questionnaire surveys can tell
us (RQ). As many important aspects of testing were not explored in this study, it cannot
be said that the overarching research question was answered satisfactorily. Examples of

34 CHAPTER 5. DISCUSSION

such topics are testing metrics, testing standards, maturity models, testing training, static
testing, test data, test environments, and organizational aspects of testing such as testing
budget and the ratio of testers to developers.

5.3 Research validity

Assessing the quality of primary studies is a critical part of conducting a systematic litera-
ture review as it allows for studies of poor quality to be excluded via the exclusion criteria
and it allows for quality to be taken into account when interpreting results [Kee+07].
No formal quality assessment was not conducted in this study, partially due to time con-
straints, but partially also because it was not deemed strictly necessary as the purpose
of this study was not statistical analysis. The inferences made were made conservatively,
only when there was plenty of supporting evidence and little or no counter-evidence. Even
so, the validity of the inferences made in this study are to some degree threatened by a
myriad of validity concerns of the primary studies themselves, such as poor sample sizes,
sampling methods, and various bias-inducing pitfalls in questionnaire design. Setting a
minimum threshold of 20 for the sample size in the exclusion criteria only somewhat mit-
igate this issue. A higher threshold was not used because high-quality studies with large
sample sizes in this research area are few and far between.

It is advisable for a single researcher conducting a systematic literature review to re-
evaluate the application of inclusion/exclusion criteria on a sample of already evaluated
primary studies to ensure the consistency of their decisions [Kee+07]. No such measures
were taken, so any mistakes made during the application of inclusion/exclusion criteria,
or other error-prone phases of conducting this research for that matter, may have gone
overlooked.

There are other threats to the validity of this study that could not so easily have been
mitigated, such as the indeterminate effect of respondent demographics on the outcomes
of the reviewed studies. For instance, here is a quote from one of the reviewed studies:

The relatively high number of management respondents is important to con-
sider when interpreting the results of the survey. An answer that indicates
that the organization does not perform a certain testing level, for example,
may mean either that the organization truly does not perform that testing

5.3. RESEARCH VALIDITY 35

level, or that is just not aware of the testing that goes on. The latter possi-
bility is entirely reasonable, especially in cases of detailed testing such as unit
testing 1.

The effect of demographic dimensions such as respondent position, years of experience,
company size and industry sector can be speculated on to help understand outliers’ data.
However, their effects can not truly be accounted for without rigorous statistical analysis,
something that is not possible for the vast majority of the reviewed studies. A particularly
cumbersome issue is that survey participants can have various degrees of understanding
of testing concepts and terminology. One study reported that 43.4% of respondents carry
out usability testing, but noted respondents are likely confusing functional tests with
usability tests and erroneously selecting the option, and that the actual percentage is
much less 7. In another survey, 50% of respondents claimed to be using tools to automate
test generation, however, attaching an auxiliary open-ended question in a later version
of the survey revealed that many respondents were confusing test generation tools with
other testing concepts and even tools that are unrelated to testing 10. These are only
individual cases where researchers directly addressed the issue; the degree to which this
has affected the outcomes of any of the reviewed studies is virtually unknowable. Some
studies attempted to mitigate this issue with measures such as including definitions in
the questionnaire, using a qualifying question to weed out respondents who lack a basic
understanding of software testing 10, or by referring respondents to ISTQB glossary for
explanations of terms. Besides respondent demographics and understanding of testing
concepts, there is also an indeterminate list of factors regarding how the reviewed studies
were carried out which may have skewed results, such as the lengths of the questionnaires
and whether incomplete answers were included or discarded.

The exact figures reported from survey studies on software testing practices should be
taken with a grain of salt regardless of the methodological soundness of the measurement,
as people who want to take surveys on software testing are more likely to be interested
in software testing than those who don’t, and can therefore reasonably be assumed to be
more likely to have adopted good testing practices than a randomly selected member of a
sample. The degree to which this has affected the outcomes of the reviewed studies, and
consequently, the outcomes of this study, is not easily known. It is probably a reasonable
assumption that this form of bias is unlikely to have affected the relative popularity of
testing practices, however.

It is possible that data has been misinterpreted during extraction. Most commonly, a

36 CHAPTER 5. DISCUSSION

reported percentage in the reviewed studies represents a fraction of all respondents. How-
ever, sometimes studies report figures which only applies to a subset of respondents. For
instance, a study might report on the percentage of respondents who automate unit testing
of those who conduct unit testing. Naturally, comparing figures of one type with figures of
the other type is not valid. For studies with high-quality reporting, the issue could easily
be identified and adjusted for when encountered. In other cases, it is possible for misin-
terpretations to have occurred. This issue may also have been mitigated by conducting a
quality assessment where shortcomings in reporting were taken into account.

5.4 Future work

Although no formal quality assessment was conducted in this work, there is an apparent
need for more high-quality survey studies using methodological rigour including proper
sampling methods, well-designed questionnaires and high-quality reporting to strengthen
this research area. More geographical coverage from primary studies is needed as well, as
there are no wide-scale survey studies written in English focusing on the software testing
practices of a number of major software economies such as Russia, China, and India.
Future literature surveys on the subject could verify the need for high-quality studies
in this research area by conducting a quality assessment. There is also still uncovered
ground for similar secondary studies to cover topics such as testing metrics, test completion
criteria, and organizational aspects of testing.

6 Conclusions

As the importance of software grows, so does the importance of the primary method of
conducting quality assurance on software, software testing. This notion is supported by
the fact that many survey studies which aim to characterize the testing practices of the
software industry have been published up in recent years.

The aim of this thesis was to aggregate results from these types of survey studies by
means of a literature survey, with a focus on the usage of test levels, test types, test design
techniques and test automation/tools.

The findings are that test levels are generally used by over two-thirds of surveyed popu-
lations but with the exception of unit testing, results can greatly vary widely depending
on the surveyed population. The most used test types in decreasing order are functional
testing, regression testing, performance testing and usability testing, and less consistently
security testing. Experience-based techniques such as exploratory testing and error guess-
ing and black-box techniques such as use case testing and boundary value analysis are
more popular than white-box techniques. A lot of scattered data exists on the topic of
automation/tools, but the principal finding is that the usage of automation is quite com-
mon, however, typically only a small fraction of test cases is automated, so overall the
industry relies heavily on manual testing.

Bibliography

[BB12] H. N. Boone Jr. and D. A. Boone. “Analyzing Likert data”. In: Journal of
Extension 50.2 (2012). Publisher: JOE.

[BW21] M. Betka and S. Wagner. “Extreme mutation testing in practice: An industrial
case study”. In: Proceedings - 2021 IEEE/ACM International Conference on
Automation of Software Test, AST 2021. IEEE, 2021, pp. 113–116.

[CLR20] M. Cerioli, M. Leotta, and F. Ricca. “What 5 million job advertisements tell
us about testing: A preliminary empirical investigation”. In: Proceedings of
the ACM Symposium on Applied Computing. ACM, 2020, pp. 1586–1594.

[CSP10] A. Causevic, D. Sundmark, and S. Punnekkat. “An industrial survey on con-
temporary aspects of software testing”. In: ICST 2010 - 3rd International
Conference on Software Testing, Verification and Validation. IEEE, 2010,
pp. 393–401.

[DA16] M. Dave and R. Agrawal. Mutation testing and test data generation ap-
proaches: A review. Vol. 628 CCIS. Communications in Computer and In-
formation Science. Springer, 2016, pp. 373–382.

[DF14] E. Daka and G. Fraser. “A survey on unit testing practices and problems”. In:
Proceedings - International Symposium on Software Reliability Engineering,
ISSRE. IEEE, 2014, pp. 201–211.

[Dia+17] A. C. Dias-Neto, S. Matalonga, M. Solari, G. Robiolo, and G. H. Travassos.
“Toward the characterization of software testing practices in South America:
looking at Brazil and Uruguay”. In: Software Quality Journal 25.4 (2017).
Publisher: Springer, pp. 1145–1183.

[DS78] R. A. DeMillo and F. G. Sayward. “Hints on test data selection: Help for the
practicing programmer”. In: Computer 11.4 (1978). Publisher: IEEE, pp. 34–
41.

[FA17] M. Felderer and F. Auer. “Software quality assurance during implementation:
Results of a survey in software houses from Germany, Austria and Switzer-
land”. In: Lecture Notes in Business Information Processing 269 (2017). Pub-
lisher: Springer, pp. 87–102.

39

[FPO18] F. C. Ferrari, A. V. Pizzoleto, and J. Offutt. “A systematic review of cost re-
duction techniques for mutation testing: Preliminary results”. In: Proceedings
- 2018 IEEE 11th International Conference on Software Testing, Verification
and Validation Workshops, ICSTW 2018. IEEE, 2018, pp. 1–10.

[FS19] R. Florea and V. Stray. “A Global View on the Hard Skills and Testing
Tools in Software Testing”. In: Proceedings - 2019 ACM/IEEE 14th Interna-
tional Conference on Global Software Engineering, ICGSE 2019. IEEE, 2019,
pp. 143–151.

[Fun14] B. Fung. How A dumb software glitch kept thousands from reaching 911. Oct.
2014. url: https://www.washingtonpost.com/news/the- switch/wp/

2014/10/20/how-a-dumb-software-glitch-kept-6600-calls-from-

getting-to-911/ (visited on 12/13/2021).

[Gar+15a] V. Garousi, A. Coşkunçay, A. Betin-Can, and O. Demirörs. “A survey of soft-
ware engineering practices in Turkey”. In: Journal of Systems and Software
108 (2015). Publisher: Elsevier, pp. 148–177.

[Gar+15b] V. Garousi, A. Coşkunçay, A. Betin-Can, and O. Demirörs. A survey of
software engineering practices in Turkey (Technical report-Extended version).
Tech. rep. 2015.

[GGS17] A. S. Ghiduk, M. R. Girgis, and M. H. Shehata. “Higher order mutation
testing: A Systematic Literature Review”. In: Computer Science Review 25
(2017). Publisher: Elsevier, pp. 29–48.

[GM16] V. Garousi and M. V. Mäntylä. “A systematic literature review of litera-
ture reviews in software testing”. In: Information and Software Technology
80 (2016). Publisher: Elsevier, pp. 195–216.

[GSM04] A. Geras, M. Smith, and J. Miller. “A survey of software testing practices in
Alberta”. In: Canadian Journal of Electrical and Computer Engineering 29.3
(2004). Publisher: IEE, pp. 183–191.

[GV10] V. Garousi and T. Varma. “A replicated survey of software testing practices in
the Canadian province of Alberta: What has changed from 2004 to 2009?” In:
Journal of Systems and Software 83.11 (2010). Publisher: Elsevier, pp. 2251–
2262.

https://www.washingtonpost.com/news/the-switch/wp/2014/10/20/how-a-dumb-software-glitch-kept-6600-calls-from-getting-to-911/
https://www.washingtonpost.com/news/the-switch/wp/2014/10/20/how-a-dumb-software-glitch-kept-6600-calls-from-getting-to-911/
https://www.washingtonpost.com/news/the-switch/wp/2014/10/20/how-a-dumb-software-glitch-kept-6600-calls-from-getting-to-911/

40 CHAPTER 6. CONCLUSIONS

[GZ13] V. Garousi and J. Zhi. “A survey of software testing practices in Canada”. In:
Journal of Systems and Software 86.5 (2013). Publisher: Elsevier, pp. 1354–
1376.

[Hab+11] P. Haberl, A. Spillner, K. Vosseberg, and M. Winter. Software Test in Prac-
tice. 2011. url: https://www.istqb.org/documents/Survey_GTB.pdf

(visited on 12/30/2021).

[Heu12] M. Heusser. Software testing lessons learned from Knight Capital Fiasco.
Aug. 2012. url: https://www.cio.com/article/2393212/software-

testing-lessons-learned-from-knight-capital-fiasco.html (visited
on 12/13/2021).

[Hyn+18] T. Hynninen, J. Kasurinen, A. Knutas, and O. Taipale. “Software testing:
Survey of the industry practices”. In: 2018 41st International Convention on
Information and Communication Technology, Electronics and Microelectron-
ics, MIPRO 2018 - Proceedings. IEEE, 2018, pp. 1449–1454.

[Int15] International Software Testing Qualifications Board. Certified Model-Based
Tester Syllabus - Version 2015. 2015. url: https : / / www . istqb . org /

downloads/send/6- model- based- tester- extension- documents/46-

istqb-ctfl-mbt-syllabus.html (visited on 12/30/2021).

[Int18] International Software Testing Qualifications Board. Certified Tester Foun-
dation Level Syllabus Version 2018 V3.1. 2018. url: https://www.istqb.

org/downloads/send/2-foundation-level-documents/281-istqb-ctfl-

syllabus-2018-v3-1.html (visited on 12/30/2021).

[ISO13] ISO/IEC/IEEE 29119-1:2013. Software and systems engineering — Software
testing — Part 1: Concepts and definitions. International Standard. Interna-
tional Organization for Standardization, Sept. 2013.

[ISO15] ISO/IEC TR 19759:2015. Software Engineering — Guide to the software engi-
neering body of knowledge (SWEBOK). International Standard. International
Organization for Standardization, Oct. 2015.

[IST16] ISTQB. ISTQB® Worldwide Software Testing Practices Survey 2015-16. 2016.
url: https://www.istqb.org/documents/ISTQB%5C%5FWorldwide%5C%

5FSoftware%5C%5FTesting%5C%5FPractices%5C%5FReport.pdf (visited on
11/25/2021).

https://www.istqb.org/documents/Survey_GTB.pdf
https://www.cio.com/article/2393212/software-testing-lessons-learned-from-knight-capital-fiasco.html
https://www.cio.com/article/2393212/software-testing-lessons-learned-from-knight-capital-fiasco.html
https://www.istqb.org/downloads/send/6-model-based-tester-extension-documents/46-istqb-ctfl-mbt-syllabus.html
https://www.istqb.org/downloads/send/6-model-based-tester-extension-documents/46-istqb-ctfl-mbt-syllabus.html
https://www.istqb.org/downloads/send/6-model-based-tester-extension-documents/46-istqb-ctfl-mbt-syllabus.html
https://www.istqb.org/downloads/send/2-foundation-level-documents/281-istqb-ctfl-syllabus-2018-v3-1.html
https://www.istqb.org/downloads/send/2-foundation-level-documents/281-istqb-ctfl-syllabus-2018-v3-1.html
https://www.istqb.org/downloads/send/2-foundation-level-documents/281-istqb-ctfl-syllabus-2018-v3-1.html
https://www.istqb.org/documents/ISTQB%5C%5FWorldwide%5C%5FSoftware%5C%5FTesting%5C%5FPractices%5C%5FReport.pdf
https://www.istqb.org/documents/ISTQB%5C%5FWorldwide%5C%5FSoftware%5C%5FTesting%5C%5FPractices%5C%5FReport.pdf

41

[IST18] ISTQB. ISTQB® Worldwide Software Testing Practices Survey 2017-18. 2018.
url: https : / / www . istqb . org / documents / ISTQB % 202017 - 18 % 5C %

5FRevised.pdf (visited on 11/25/2021).

[IST21a] ISTQB. ISTQB Glossary. 2021. url: https://glossary.istqb.org/en/

search/mutation%20testing (visited on 10/10/2021).

[IST21b] ISTQB. ISTQB Surveys. 2021. url: https://www.istqb.org/references/

surveys.html (visited on 11/24/2021).

[JH11] Y. Jia and M. Harman. “An analysis and survey of the development of mu-
tation testing”. In: IEEE Transactions on Software Engineering 37.5 (2011).
Publisher: IEEE, pp. 649–678.

[JSR17] N. Jatana, B. Suri, and S. Rani. “Systematic Literature Review on Search
based mutation testing”. In: E-Informatica Software Engineering Journal 11.1
(2017). Publisher: Biblioteka Nauki, pp. 59–76.

[Jun+21] N. Junior, H. Costa, L. Karita, I. MacHado, and L. Soares. “Experiences and
Practices in GUI Functional Testing: A Software Practitioners’ View”. In:
ACM International Conference Proceeding Series. ACM, 2021, pp. 195–204.

[Kas+21] M. Kassab, P. Laplante, J. Defranco, V. V. G. Neto, and G. Destefanis.
“Exploring the Profiles of Software Testing Jobs in the United States”. In:
IEEE Access 9 (2021). Publisher: IEEE, pp. 68905–68916.

[KDL17] M. Kassab, J. F. Defranco, and P. A. Laplante. “Software Testing: The State
of the Practice”. In: IEEE Software 34.5 (2017). Publisher: IEEE, pp. 46–52.

[Kee+07] S. Keele et al. Guidelines for performing systematic literature reviews in soft-
ware engineering. Tech. rep. Citeseer, 2007.

[LKL12] J. Lee, S. Kang, and D. Lee. “Survey on software testing practices”. In: IET
Software 6.3 (2012). Publisher: IET, pp. 275–282.

[LR20] B. Latif and T. Rana. “A preliminary survey on software testing practices in
Khyber PakhtunKhwa region of Pakistan”. In: Turkish Journal of Electrical
Engineering and Computer Sciences 28.1 (2020). Publisher: The Scientific
and Technological Research Council of Turkey, pp. 575–589.

[LSM20] J.-W. Lin, N. Salehnamadi, and S. Malek. “Test Automation in Open-Source
Android Apps: A Large-Scale Empirical Study”. In: Proceedings - 2020 35th
IEEE/ACM International Conference on Automated Software Engineering,
ASE 2020. IEEE, 2020, pp. 1078–1089.

https://www.istqb.org/documents/ISTQB%202017-18%5C%5FRevised.pdf
https://www.istqb.org/documents/ISTQB%202017-18%5C%5FRevised.pdf
https://glossary.istqb.org/en/search/mutation%20testing
https://glossary.istqb.org/en/search/mutation%20testing
https://www.istqb.org/references/surveys.html
https://www.istqb.org/references/surveys.html

42 CHAPTER 6. CONCLUSIONS

[MI21] T. Maxime Carlos and M. Ibrahim. “Practices in software testing in Cameroon
challenges and perspectives”. In: Electronic Journal of Information Systems
in Developing Countries 87.3 (2021). Publisher: Wiley Online Library, e12165.

[Ng+04] S. Ng, T. Murnane, K. Reed, D. Grant, and T. Chen. “A preliminary survey
on software testing practices in Australia”. In: Proceedings of the Australian
Software Engineering Conference, ASWEC. Vol. 2004. IEEE, 2004, pp. 116–
125.

[Pap+19] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman.
Mutation Testing Advances: An Analysis and Survey. Vol. 112. Advances in
Computers. Elsevier, 2019, pp. 275–378.

[Pet+21] G. Petrovic, M. Ivankovic, G. Fraser, and R. Just. “Practical Mutation Test-
ing at Scale: A view from Google”. In: IEEE Transactions on Software Engi-
neering (2021). Publisher: IEEE.

[Piz+19] A. V. Pizzoleto, F. C. Ferrari, J. Offutt, L. Fernandes, and M. Ribeiro. “A
systematic literature review of techniques and metrics to reduce the cost of
mutation testing”. In: Journal of Systems and Software 157 (2019). Publisher:
Elsevier.

[PV19] J. A. D. Prado Lima and S. R. Vergilio. “A systematic mapping study on
higher order mutation testing”. In: Journal of Systems and Software 154
(2019). Publisher: Elsevier, pp. 92–109.

[QHJ19] C. Quesada-López, E. Hernandez-Agüero, and M. Jenkins. “A survey of soft-
ware testing practices in Costa Rica”. In: XXII Ibero-American Conference on
Software Engineering, CIbSE 2019 (2019). Publisher: Ibero-American Con-
ference on Software Engineering, pp. 503–516.

[SSL17] R. A. Silva, S. D. R. Senger de Souza, and P. S. Lopes de Souza. “A system-
atic review on search based mutation testing”. In: Information and Software
Technology 81 (2017). Publisher: Elsevier, pp. 19–35.

[Tas02] G. Tassey. The Economic Impacts of Inadequate Infrastructure for Software
Testing. Tech. rep. National Institute of Standards and Technology, May 2002.

[TR13] M. Torchiano and F. Ricca. “Six reasons for rejecting an industrial survey
paper”. In: 2013 1st International Workshop on Conducting Empirical Studies
in Industry, CESI 2013 - Proceedings. IEEE, 2013, pp. 21–26.

43

[Tur12] Turkish Testing Board. Turkey Software Quality Report 2011-2012. 2012.
url: https://www.istqb.org/documents/Survey%5C%5FTTB%5C%5F2011.

pdf (visited on 11/24/2021).

[Tur13] Turkish Testing Board. Turkey Software Quality Report 2012-2013. 2013.
url: https://www.istqb.org/documents/Survey%5C%5FTTB.pdf (vis-
ited on 11/24/2021).

[Tur14] Turkish Testing Board. Turkey Software Quality Report 2013-2014. 2014.
url: https://www.istqb.org/documents/Turkey%20Software%20Quality%

20Report%202013-2014.pdf (visited on 11/24/2021).

[Tur16] Turkish Testing Board. Turkey Software Quality Report 2015-2016. 2016.
url: https://www.istqb.org/documents/Turkey%20Software%20Quality%

20Report%202015-2016.pdf (visited on 11/25/2021).

[Tur18] Turkish Testing Board. Turkey Software Quality Report 2017-2018. 2018.
url: https://www.istqb.org/documents/Turkey%20Software%20Quality%

20Report%202017-2018.pdf (visited on 11/25/2021).

[Tur19] Turkish Testing Board. Turkey Software Quality Report 2018-2019. 2019.
url: https://www.istqb.org/documents/Turkey%20Software%20Quality%

20Report%202018-2019.pdf (visited on 11/25/2021).

[Vuk+20] V. Vukovic, J. Djurkovic, M. Sakal, and L. Rakovic. “An empirical investiga-
tion of software testing methods and techniques in the province of Vojvodina”.
In: Tehnički vjesnik 27.3 (2020). Publisher: Strojarski fakultet u Slavonskom
Brodu, pp. 687–696.

[WG18] D. Wang and M. Galster. “Development processes and practices in a small
but growing software industry: A practitioner survey in New Zealand”. In: In-
ternational Symposium on Empirical Software Engineering and Measurement.
ACM, 2018.

[ZPZ18] Q. Zhu, A. Panichella, and A. Zaidman. “A systematic literature review of
how mutation testing supports quality assurance processes”. In: Software
Testing Verification and Reliability 28.6 (2018). Publisher: Wiley Online Li-
brary.

https://www.istqb.org/documents/Survey%5C%5FTTB%5C%5F2011.pdf
https://www.istqb.org/documents/Survey%5C%5FTTB%5C%5F2011.pdf
https://www.istqb.org/documents/Survey%5C%5FTTB.pdf
https://www.istqb.org/documents/Turkey%20Software%20Quality%20Report%202013-2014.pdf
https://www.istqb.org/documents/Turkey%20Software%20Quality%20Report%202013-2014.pdf
https://www.istqb.org/documents/Turkey%20Software%20Quality%20Report%202015-2016.pdf
https://www.istqb.org/documents/Turkey%20Software%20Quality%20Report%202015-2016.pdf
https://www.istqb.org/documents/Turkey%20Software%20Quality%20Report%202017-2018.pdf
https://www.istqb.org/documents/Turkey%20Software%20Quality%20Report%202017-2018.pdf
https://www.istqb.org/documents/Turkey%20Software%20Quality%20Report%202018-2019.pdf
https://www.istqb.org/documents/Turkey%20Software%20Quality%20Report%202018-2019.pdf

Appendix A Extracted data

This appendix only contains table A.1, which presents the all of the data extracted from
the surveyed studies.

Table A.1: The data which was extracted from the studies. Values displayed in italics are estimates based
on plotted data without explicit labeling of data points. Numerical values under findings are percentages,
specifically, a percentage of respondents unless otherwise specified.

Study metadata

Assigned identifier 1
Title “A survey of software

testing practices in Alberta”
Year 2004
Author(s) Geras, Smith, and Miller
Reference [GSM04]
Survey metadata

Year(s) conducted 2002
Responses analyzed Almost 60
Target population Software organizations
Region/scope Alberta, Canada
Findings

Test level usage (management/non-management) (RQ1)
• Unit 73/92
• System 90/92
• Accept 70/80
Test type usage (management/non-management) (RQ2)
• Alpha 40/40
• Regression 66/72
• Security 37/44
• Stress 63/60
• Usability 53/24
Test design technique usage (RQ3)
• Tester skill 91
• Customer requirements 72
• Out of Range 52
• Risks 43
• Boundary Values 28
• States 17
• Decision Tables 10
• Equivalence 5

ii Appendix A

• Flow Graphs 5
• Cause Effect Graphs 3
Defect tracking tool usage (RQ4) 68
Automation of test levels/types (RQ4)
• Unit 32
• Integration 11
• System 22
• Regression 26
• Stress 29

Appendix A iii

Study metadata

Assigned identifier 2
Title “A preliminary survey on

software testing practices in
Australia”

Year 2004
Author(s) Ng et al.
Reference [Ng+04]
Survey metadata

Year(s) conducted 2002-2003
Responses analyzed 65
Target population Software organizations
Region/scope Australia
Findings

Test type usage (RQ2)
• UAT 47.7
• Regression testing 69.2
Test design technique usage (RQ3)
• Black-box 44.6
• White-box 24.6
• Data-flow analysis 27.7
• Mutation analysis 4.6
• Symbolic analysis 0
Some testing activities are automated using tools (RQ4) 67.7
How those who use testing tools acquire them (RQ4)
• Commercially 68.2
• Develop tools in-house 13.6
• Out-sourcing tool development 2.3
Tool usage (RQ4)
• Test execution 53.8
• Regression testing 50.1
• Test analysis and reporting 41.5
• Generating test cases/scripts 30.8
• Test planning/management 26.2

iv Appendix A

Study metadata

Assigned identifier 3
Title “A replicated survey of

software testing practices in
the Canadian province of

Alberta: What has changed
from 2004 to 2009?”

Year 2010
Author(s) Garousi and Varma
Reference [GV10]
Survey metadata

Year(s) conducted 2009
Responses analyzed 53
Target population Software organizations
Region/scope Alberta, Canada
Findings

Test level usage (RQ1)
• Unit 96
• Integration 37
• System 97
• Accept 88
Test type usage (RQ2)
• Alpha 50
• Regression 68
• Security 13
• Stress 57
• Usability 47
Test design technique usage (RQ3)
• Tester skill 91
• Customer requirements (user stories) 78
• Out of Range 47
• Risks 20
• Boundary Values 45
• States 22
• Decision Tables 8
• Equivalence classes 16
• Flow Graphs 10
• Cause Effect Graphs 10
Automation of test levels/types (RQ4)
• Unit 65
• Integration 27
• System 45

Appendix A v

• Regression 45
• Stress 20
Tool usage (RQ4)
• JUnit 30
• IBM Rational test products 21
• NUnit 21
• FitNesse 17
• Watin 4
• Parasoft test products 0
• Microsoft test products 0
• Watir 0

vi Appendix A

Study metadata

Assigned identifier 4
Title “An industrial survey on

contemporary aspects of
software testing”

Year 2010
Author(s) Causevic, Sundmark, and

Punnekkat
Reference [CSP10]
Survey metadata

Year(s) conducted 2009
Responses analyzed 83
Target population Software companies
Region/scope Not explicit; possibly

Europe
Findings

Test level/type usage (0 - never, 7 always)
• Unit (RQ1) mode 5 and 7, median 5
• Performance (including load and stress) (RQ2) mode 7, median 5
• Functional black-box system (RQ1) (RQ2) (RQ3) mode 4, median 6
Notes

Results broken down by domain not extracted due to small sample

Appendix A vii

Study metadata

Assigned identifier 5
Title Software Test in Practice
Year 2011
Author(s) Haberl et al.
Reference [Hab+11]
Survey metadata

Year(s) conducted 2011
Responses analyzed 1623
Target population Software professionals
Region/scope Germany (77%),

Switzerland (13%), Austria
(10%)

Findings

Test type usage (RQ2)
• Regression test 80.1
• Smoke test 59.5
• Load/performance test 50
• Migration test 26
• Security/penetration test 26
Usage of black-box test design techniques (RQ3)
• Functionality testing or function coverage 82.2
• Use case testing 77.1
• Boundary value analysis 67.6
• Equivalence partitioning 60.9
• Random testing 38.9
• State transition testing 38.3
• Decision table testing 33.1
• Pairwise testing 15.2
• Classification tree method 12.7
• Other black-box techniques 13.7
• No black-box techniques 3.5
Usage of white-box test design techniques (RQ3)
• Statement coverage 41.9
• Decision/branch coverage 35.8
• Condition coverage 23.2
• Path coverage 22.1
• Multiple condition coverage 13.2
• Condition determination coverage 13.2
• Other white-box techniques 13.7
• No white-box techniques 3.5
Usage of experience-based test design techniques (RQ3)

viii Appendix A

• Error guessing 84.6
• Exploratory testing without test objectives 66.1
• Exploratory testing with test objectives 33.3
• Fault attack with defect checklists 21.5
• Other experience-based test techniques 15.2
• No experience-based test techniques 5.5
Comparison of expected/actual result is automated (RQ4) 22
Automation level of test types/levels (mode, median) (RQ4)
• Unit 70/85, 70/85
• Integration 15/30, 15/30
• System 15/30, 15/30
• Acceptance 0 15/30
Test tools are used in projects (mode median) (RQ4)
• Developers 3/3, 2/3
• Testers 2/3, 2/3

Appendix A ix

Study metadata

Assigned identifier 6
Title “Survey on software testing

practices”
Year 2012
Author(s) J. Lee, Kang, and D. Lee
Reference [LKL12]
Survey metadata

Year(s) conducted Unknown
Responses analyzed 24
Target population Software professionals
Region/scope Mostly USA
Findings

Tools are used for activity (RQ4)
• Test estimation 43
• Test planning 48
• Unit testing 26
• Integration testing 34
• System testing 47
• Acceptance testing 25
• Defect management 90
• Defect tracking 76
• Test reporting 76

x Appendix A

Study metadata

Assigned identifier 7
Title Turkey Software Quality

Report 2011-2012
Year 2012
Author(s) Turkish Testing Board
Reference [Tur12]
Survey metadata

Year(s) conducted 2011-2012
Responses analyzed Unknown
Target population Software professionals
Region/scope Turkey
Findings

Usage of test types (RQ2)
• Functional 98.1
• Performance 83.0
• Usability 43.4
Test design approach (RQ3)
• Creating and running test cases 20.8
• Ad hoc testing 50.3
• Both 28.9
Utilization level of used test automation tools (mode, median) (RQ4) Less than 50%, Less than

50%
Purpose of test automation (RQ4)
• Bug tracking 64
• Functional/Regression testing 58
• Performance testing 44
• Test case management 40
• Requirements management 24

Appendix A xi

Study metadata

Assigned identifier 8
Title “A survey of software

testing practices in Canada”
Year 2013
Author(s) Garousi and Zhi
Reference [GZ13]
Survey metadata

Year(s) conducted 2010
Responses analyzed 246
Target population Software practitioners
Region/scope Canada
Findings

Usage of test levels (RQ1)
• Unit 80
• Functional/system (RQ2) 78
Usage of test types (RQ2)
• Performance 56
• GUI 61
• UAT 56
Usage of test case generation techniques (RQ3)
• Other 12
• No explicit test case generation technique 38
• Exploratory testing 5
• Code coverage (white-box testing) 22
• Model-based techniques (e.g., based on UML) 15
• Boundary Value Analysis 28
• Category partitioning (i.e., equivalence classing) 24
• Mutation testing 29
Average ratio of automated to manual testing (RQ4) 20/80
Usage of tools and frameworks (RQ4)
• Other tools and frameworks 28
• Web application testing tools 35
• Family of commercial functional web tools (non-web) 41
• XUnit frameworks (e.g., JUnit, NUnit) 63
Notes

Figure 15 differs from body text on functional/system testing. Extracted
data from body text.

xii Appendix A

Study metadata

Assigned identifier 9
Title Turkey Software Quality

Report 2012-2013
Year 2013
Author(s) Turkish Testing Board
Reference [Tur13]
Survey metadata

Year(s) conducted 2012-2013
Responses analyzed Unknown
Target population Software professionals
Region/scope Turkey
Findings

Test process is automated (RQ4)
• Test management 32.5
• Test execution 36.4
• Test design 13.0
• Unit testing 33.8
• Static analysis 15.6
• Code profiling 15.6
• Performance testing and simulation 42.9

Appendix A xiii

Study metadata

Assigned identifier 10
Title “A survey on unit testing

practices and problems”
Year 2014
Author(s) Daka and Fraser
Reference [DF14]
Survey metadata

Year(s) conducted 2013
Responses analyzed 171
Target population Software developers
Region/scope Worldwide, mostly USA
Findings

Usage of mutation analysis (mode, median) (RQ3) Frequently, Frequently
Usage of automated test generation (mode, median) (RQ4) Frequently, Frequently
What is automated unit test generation used for (RQ4)
• Exercising specifications (e.g., JML, code contracts) 33
• Exercising assertions in code 38
• Exercising parameterised unit tests 38
• Finding crashes and undeclared exceptions 41
• To complement manually written tests 8
• Other 8

xiv Appendix A

Study metadata

Assigned identifier 11
Title Turkey Software Quality

Report 2013-2014
Year 2014
Author(s) Turkish Testing Board
Reference [Tur14]
Survey metadata

Year(s) conducted 2013-2014
Responses analyzed Unknown
Target population Software professionals
Region/scope Turkey
Findings

Usage of test techniques (RQ3)
• Use case testing 76.2
• Checklist based 60.3
• Error guessing 54.0
• Exploratory testing 49.2
• Boundary value analysis 41.3
• Decision table 31.7
• State transition 23.8
• Attacks 22.2
• Statement coverage 20.6
• Decision coverage 20.6
• Equivalence partitioning 15.9
• Classification tree 11.1
• Pair-wise testing 9.5

Appendix A xv

Study metadata

Assigned identifier 12
Title “A survey of software

engineering practices in
Turkey”

Year 2015
Author(s) Garousi et al.
Reference [Gar+15a]
Survey metadata

Year(s) conducted 2013
Responses analyzed 202
Target population Software practitioners
Region/scope Turkey
Findings

Test level usage (mode, median) (RQ1)
• Unit Frequently, Sometimes
• Integration Always, Frequently
• Functional/system Always, Frequently
Test type usage (mode, median) (RQ2)
• UAT Always, Frequently
• Performance testing Sometimes, Sometimes
• Load/stress testing Seldom, Sometimes
• Security testing Sometimes, Sometimes
Usage of test design techniques (RQ3)
• No explicit test-case generation technique 49
• Source code analysis 33
• Model-based techniques 22
• Boundary value analysis 24
• Category partitioning 24
Automated tool usage for activities (mode, median) (RQ4)
• Code inspections Frequently, Sometimes
• Static code analysis Frequently, Sometimes
Usage of test automation (mode, median) (RQ4) Seldom, Seldom

xvi Appendix A

Study metadata

Assigned identifier 13
Title ISTQB® Worldwide

Software Testing Practices
Survey 2015-16

Year 2016
Author(s) ISTQB
Reference [IST16]
Survey metadata

Year(s) conducted 2015
Responses analyzed 3200
Target population Software professionals
Region/scope Worldwide
Findings

Usage of non-functional test types (RQ2)
• Performance 63
• Usability 56.1
• Security 38.5
• Reliability 30.7
• Accessibility 29.1
• Testability 27.7
• Efficiency 25.9
• Availability 25.6
• Maintainability 18.9
• Interoperability 18.5
• Operability 17.5
• Scalability 15
• Recoverability 12.9
• Portability 10.6
• Supportability 8.4
• Extensibility 5.2
Usage of test techniques (RQ3)
• Use case testing 70.8
• Exploratory testing 66.3
• Checklist based 54.1
• Boundary value analysis 48.2
• Error guessing 37
• Equivalence partition 34
• Decision tables 21.5
• State transition 21.4
• Statement coverage 18.2
• Pair-Wise testing 13.2

Appendix A xvii

• Attacks 10.4
• Classification tree 7.1
• Other 2.2
Usage of tools (RQ4)
• Defect tracking 81.2
• Test execution 70.0
• Test automation 67.3
• Test management 65.4
• Performance testing 55.2
• Test design 49.7
• Requirements traceability 47.4
• Unit testing 42.9
• Static analysis 26.4
• Dynamic analysis 16.0
• Other 1.6
Percentage of test cases automated (mode, median) (RQ4) Less than 20%, Less then

20%

xviii Appendix A

Study metadata

Assigned identifier 14
Title Turkey Software Quality

Report 2015-2016
Year 2016
Author(s) Turkish Testing Board
Reference [Tur16]
Survey metadata

Year(s) conducted 2015-2016
Responses analyzed Unknown
Target population Software professionals
Region/scope Turkey
Findings

Usage of tools (RQ4)
• Performance testing tools 66.4
• Monitoring tools 51.9
• Emulators / simulators 34.9
• Virtual servers 29.2
• Application performance management - APM tools 18.6
• Service virtualization tools 18.0
• Application profilers 16.9

Appendix A xix

Study metadata

Assigned identifier 15
Title “Toward the

characterization of software
testing practices in South

America: looking at Brazil
and Uruguay”

Year 2017
Author(s) Dias-Neto et al.
Reference [Dia+17]
Survey metadata

Year(s) conducted 2015
Responses analyzed 150
Target population Testing practitioners
Region/scope Southern/Brazil (37%),

Northern/Brazil (33%),
Uruguay (30%)

Findings

Usage of test levels (NB, SB, UY) (RQ1)
• Unit 71, 79, 78
• Integration 79, 83, 86
• System 88, 89, 88
• Acceptance 83,82,85
Usage of test types (RQ2)
• Regression 84, 83, 84
• Performance 70, 68, 71
• Security 70, 68, 74
Usage of exploratory testing (RQ3) 85, 77, 82
Usage of tools for activities (RQ4)
• Test database for reuse 81, 88, 91
• Automatic execution of test procedures or cases 78, 81, 81
• Automatic generation of test procedures or cases 69, 71, 73
• Track and record results 83, 84, 88
• Estimate test effort and/or schedule 73, 75, 74
• Enact activities and artifacts 78, 80, 76
• Recording defects and the effort to fix them (bug tracking) 89, 89, 92
• Coverage measurement 71, 78, 68
• Continuous integration for automated tests 75, 82, 70
• Selection of test tools according to project characteristics 83, 78, 83

xx Appendix A

Study metadata

Assigned identifier 16
Title “Software Testing: The

State of the Practice”
Year 2017
Author(s) Kassab, Defranco, and

Laplante
Reference [KDL17]
Survey metadata

Year(s) conducted 2015
Responses analyzed 167
Target population Software professionals
Region/scope Seemingly USA
Findings

Usage of test levels (RQ1)
• Unit 72
• Integration 67
• System 81
• Acceptance 72
Usage of regression resting (RQ2) 63
Usage of test types (for system tests) (RQ2)
• Regulatory 13
• Documentation 28
• Reliability 41
• Scalability 19
• Interoperability 21
• Load and stability 28
• Stress 30
• Performance 63
• Functionality 91
Usage of test design techniques (RQ3)
• Black-box 78
• White-box 42
Automatic comparison of actual and expected results (RQ4) 34

Appendix A xxi

Study metadata

Assigned identifier 17
Title “Software quality assurance

during implementation:
Results of a survey in
software houses from

Germany, Austria and
Switzerland”

Year 2017
Author(s) Felderer and Auer
Reference [FA17]
Survey metadata

Year(s) conducted 2015
Responses analyzed 57
Target population Software houses
Region/scope Germany (33%), Austria

(33%) and Switzerland
(33%)

Findings

Usage of unit testing (RQ1) 68
Usage of tools (RQ4)
• Static code analysis 37
• Bug tracking 84

xxii Appendix A

Study metadata

Assigned identifier 18
Title “Software testing: Survey of

the industry practices”
Year 2018
Author(s) Hynninen et al.
Reference [Hyn+18]
Survey metadata

Year(s) conducted 2017
Responses analyzed 33
Target population Software organizations
Region/scope Finland
Findings

Testing tool usage during activities (RQ4)
• Bug/Defect reporting 72.2
• Test automation 66.7
• Unit testing 57.6
• Bug/Code tracing 57.6
• Performance testing 48.5
• Test case management 45.5
• Integration testing 45.5
• Virtual test environment 42.5
• Automated metrics collector 36.4
• System testing 27.3
• Security testing 24.2
• Test completeness 24.2
• Test design 15.2
• Protocol/Interface conformance tool 9.1

Appendix A xxiii

Study metadata

Assigned identifier 19
Title “Development processes and

practices in a small but
growing software industry:

A practitioner survey in
New Zealand”

Year 2018
Author(s) Wang and Galster
Reference [WG18]
Survey metadata

Year(s) conducted 2017-2018
Responses analyzed 101
Target population Software developers
Region/scope New Zealand
Findings

Usage of test levels (RQ1)
• Unit 73
• Integration 48
• System 26
• Acceptance 45
Usage of UI testing (RQ2) 35
Usage of automated testing (RQ4) 62

xxiv Appendix A

Study metadata

Assigned identifier 20
Title ISTQB® Worldwide

Software Testing Practices
Survey 2017-18

Year 2018
Author(s) ISTQB
Reference [IST18]
Survey metadata

Year(s) conducted 2017-2018
Responses analyzed 2000
Target population Software professionals
Region/scope Worldwide
Findings

Test type usage (RQ2)
• Functional 83.0
• Performance 60.7
• Security 44.6
• Usability 44.1
• Accessibility 28.2
• Reliability 22.4
• Testability 20.5
• Availability 19.8
• Maintainability 19.3
• Efficiency 18.8
• Scalability 15.5
• Interoperability 15.4
• Operability 12.8
• Portability 11.1
• Recoverability 10.4
• Supportability 6.7
• Extensibility 4.2
• UAT 66
Test design technique usage (RQ3)
• Use case testing 73.0
• Exploratory testing 67.2
• Boundary value analysis 52.3
• Checklist based 49.7
• Error guessing 36.0
• Equivalence partitioning 36.0
• Decision tables 28.9
• Decision coverage 25.1

Appendix A xxv

• Statement coverage 21.6
• State transition 20.7
• Pair-wise Testing 13.4
• Attacks 9.3
• Classification tree 6.4
• Other 2.1
Tool usage (RQ4)
• Defect tracking 80.6
• Test automation 70.1
• Test execution 69.7
• Test management 65.2
• Performance testing 51.2
• Requirements traceability 45.8
• Test design 43.9
• Unit testing 43.8
• Static analysis 27.9
• Dynamic analysis 17.2
• Other 2
Percentage of test cases automated (mode, median) (RQ4) 1-10%, 11-20%

xxvi Appendix A

Study metadata

Assigned identifier 21
Title Turkey Software Quality

Report 2017-2018
Year 2018
Author(s) Turkish Testing Board
Reference [Tur18]
Survey metadata

Year(s) conducted 2017-2018
Responses analyzed 300
Target population Software professionals
Region/scope Turkey
Findings

Usage of test automation for test levels/types (RQ4)
• Regression 35
• UI 25
• Integration 18
• Unit 18
Tool usage (RQ4)
• Test management 70
• Test automation 57
• Defect tracking 52
• Test data management 24
• CI/DevOps tools 23
• Static analysis 18
• Dynamic analysis 16
• Test virtualization 9
• Other 1

Appendix A xxvii

Study metadata

Assigned identifier 22
Title “A survey of software

testing practices in Costa
Rica”

Year 2019
Author(s) Quesada-López,

Hernandez-Agüero, and
Jenkins

Reference [QHJ19]
Survey metadata

Year(s) conducted 2018
Responses analyzed 92
Target population Software professionals
Region/scope Costa Rica
Findings

Usage of test levels (RQ1)
• Unit 79
• Integration 81
• System 83
• Acceptance 88
Usage of test types (RQ2)
• Performance 71
• Security 71
• Regression 79
Usage of exploratory testing (RQ3) 69
Usage of tools for activities (RQ4)
• Test database for reuse 77
• Automatic execution of test procedures or cases 71
• Automatic generation of test procedures or cases 58
• Track and record results 74
• Estimate test effort and/or schedule 62
• Enact activities and artifacts 73
• Recording defects and the effort to fix them (bug tracking) 82
• Coverage measurement 61
• Continuous integration for automated tests 66
• Selection of test tools according to project characteristics 67

xxviii Appendix A

Study metadata

Assigned identifier 23
Title Turkey Software Quality

Report 2018-2019
Year 2019
Author(s) Turkish Testing Board
Reference [Tur19]
Survey metadata

Year(s) conducted 2018-2019
Responses analyzed Unknown
Target population Software professionals
Region/scope Turkey
Findings

Test type usage (RQ2)
• Functionality 92
• Performance 64
• Usability 62
• Accessibility 35
• Testability 34
• Security 33
• Availability 28
• Reliability 26
• Maintainability 25
• Operability 13
• Portability 13
• Interoperability 12
• Recoverability 11
• Supportability 8
• Extensibility 8
• Scalability 8
Test technique usage (RQ3)
• Use case testing 69
• User story testing 61
• Checklist based 61
• Error guessing 43
• Exploratory testing 42
• Boundary value analysis 38
• Decision table 26
• Equivalence partitioning 25
• Decision coverage 22
• State transition 19
• Statement coverage 16

Appendix A xxix

• Classification tree 15
• Attacks 13
• Pair-wise testing 9
• Other 1
Tool usage for activities (RQ4)
• Defect tracking 59
• Test management 58
• Performance testing 50
• Test execution 49
• Unit testing 38
• Test design 37
• Requirements traceability 31
• Static analysis 24
• Dynamic analysis 11
• Other 2
Degree of test automation (mode, median) (RQ4) 1-10%, 11-20%

xxx Appendix A

Study metadata

Assigned identifier 24
Title “A preliminary survey on

software testing practices in
Khyber PakhtunKhwa

region of Pakistan”
Year 2020
Author(s) Latif and Rana
Reference [LR20]
Survey metadata

Year(s) conducted 2018
Responses analyzed 70
Target population Software organizations
Region/scope Khyber PakhtunKhwa,

Pakawistan
Findings

Most used box approach (RQ3)
• White-box 57.1
• Black-box 32.9
• Grey-box 11.4
Most used test design technique (RQ3)
• Tester skills 58.6
• Boundary value analysis 8.6
• Equivalence partitioning 11.4
• Control flow graph 21.4
Notes

The questionnaire in this survey is designed differently than the other
ones in that for example, rather than asking respondents which test de-
sign techniques they used, respondents were asked to select their most
used test design technique (single choice). Using this approach requires
that the options are mutually exclusive and comprehensive; data about
test levels and test tools were not extracted due to problems in this re-
gard.

Appendix A xxxi

Study metadata

Assigned identifier 25
Title “An empirical investigation

of software testing methods
and techniques in the

province of Vojvodina”
Year 2020
Author(s) Vukovic et al.
Reference [Vuk+20]
Survey metadata

Year(s) conducted Unknown
Responses analyzed 83
Target population Software professionals
Region/scope Vojvodina, Serbia
Findings

Usage of test design techniques (RQ3)
• Black-box 92.2
• White-box 78.4
• Equivalence class partitioning 21.7
• Boundary value analysis 60.2
• Combinatorial test techniques 49.4
• Cause-Effect graphing 24.1
• Statement coverage 48.2
• Branch Coverage 53.0
• Condition Coverage 61.4
• Loop Coverage 55.4
• Control Flow Graphs 44.6
• Code Complexity Analysis 36.1
• Exploratory testing (mode, median) Medium agreement,

Medium agreement

xxxii Appendix A

Study metadata

Assigned identifier 26
Title “Experiences and Practices

in GUI Functional Testing:
A Software Practitioners’

View”
Year 2021
Author(s) Junior et al.
Reference [Jun+21]
Survey metadata

Year(s) conducted 2021
Responses analyzed 222
Target population Testing professionals
Region/scope Brazil
Findings

Tools/frameworks used for GUI testing (RQ4)
• Selenium 35.97
• Appium 20.95
• Cypress 9.49
• Others 7.51
• TestComplete 5.14
• Sikuli 3.95
• SilkTest 3.16
• Robot Framework 2.77
• Microsoft Coded UI Tests 2.37
• Oracle Application Testing Suite 1.58
• UFT 1.58
• IBM Rational Functional Tester 1.19
• Ranorex 1.19
• Protractor 0.79
• TestCafe 0.79
• VS Code 0.79
• Webdriver IO 0.79
Usage of automation in GUI tests (RQ4)
• Only automation 9
• Some automation, some manual 41
• No automation 52
Automation of activities (RQ4)
• API tests 37
• Integration tests 28
• Performance tests 21
• Unit tests 12

Appendix A xxxiii

• Regression tests 0.5
• Chatbot tests 0.5
• Security 0.5
Tools used for reporting bugs found using manual tests (RQ4)
• Kanban board 48.2
• Jira 21.6
• Slack message 13.1
• Others 7.2
• Mantis 7.2
• Spreadsheets 5.9
• Azure DevOps 4.5
• E-Mail 4.5
• AML 2.3
• Microsoft Teams 0.9
• Silk 0.9
• Trello 0.9
• Zephyr 0.9
• Corporate platform 1.4
Tools used for reporting bugs found using automated tests (RQ4)
• Kanban board 27.0
• Slack message 10.4
• Jira 8.6
• Others 7.7
• E-mail 5.9
• Mantis 3.2
• Azure DevOps 2.3
• Direct Messenger 1.4
• Redmine 0.9
• Reports 0.9

xxxiv Appendix A

Study metadata

Assigned identifier 27
Title “Practices in software

testing in Cameroon
challenges and perspectives”

Year 2021
Author(s) Maxime Carlos and Ibrahim
Reference [MI21]
Survey metadata

Year(s) conducted Unknown
Responses analyzed 30
Target population Software companies
Region/scope Cameroon
Findings

Usage of test levels (RQ1)
• Unit 73.33
• Integration 76.67
• System 26.67
• Acceptance 26.67
Usage of test types (RQ2)
• Ramp-up/scalability test 3.33
• Recovery test 6.67
• Compatibility test 13.33
• Conformity test 26.67
• Security test 43.33
• Performance test 43.33
• Regression testing 53.33
• Usability test 63.33
Techniques for identifying test scenarios (RQ3)
• Technique based model 10
• White box test 10
• Partitioned analysis 13.33
• Value limit analysis 30.00
• Exploratory test 30.00
• No explicit technique 60.00
Frequency of mutation test usage (mode, median) (RQ3) Never, Never
Development of test tools for activities (RQ4)
• None 83.33
• Test execution 6.66
• Regression testing 6.66
• Analysis and production of results 3.33
• Test data generation 3.33

Appendix A xxxv

• Scenarios generation/Scripts test 0
• Planning/tests management 0
Usage automatic testing tools (RQ4) 40
Usage of specific tools (RQ4)
• Selenium 40
• Sonarqube 15
• FindBugs 10
• XStubio 5
• JUNIT 5
• JENNY 5
• JMeter 5
• HP ALM 0
• Testlink 0
• HP UFT 0
• NeoLoad 0
• SlideShare 0

	Introduction
	Background
	Testing concepts and definitions
	Research context

	Research method
	Research questions
	Search process
	Exclusion criteria
	Snowballing
	Data extraction

	Results
	Overview of primary studies
	Test levels
	Test types
	Test design techniques
	Automation and tools
	Usage of automation and tools
	Usage of specific tools for testing activities
	How testing tools are acquired

	Discussion
	Analysis
	Research questions revisited
	Research validity
	Future work

	Conclusions
	Bibliography
	Extracted data

