

Master's thesis

Master's Programme in Computer Science

## Industrial Surveys on Software Testing Practices: A Literature Review

Kim Bäckström

January 2, 2022

FACULTY OF SCIENCE UNIVERSITY OF HELSINKI

#### **Contact** information

P. O. Box 68 (Pietari Kalmin katu 5)00014 University of Helsinki, Finland

Email address: info@cs.helsinki.fi URL: http://www.cs.helsinki.fi/

#### HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI

| Tiedekunta — Fakultet — Faculty                           |                    | Koulutusohjelma — Utbildningsprogram — Study programme |                                         |  |  |  |
|-----------------------------------------------------------|--------------------|--------------------------------------------------------|-----------------------------------------|--|--|--|
| Faculty of Science                                        |                    | Master's Programme in Computer Science                 |                                         |  |  |  |
| Tekijā — Författare — Author                              |                    |                                                        |                                         |  |  |  |
| Kim Bäckström                                             |                    |                                                        |                                         |  |  |  |
| Työn nimi — Arbetets titel — Title                        |                    |                                                        |                                         |  |  |  |
| Industrial Surveys on Software Te                         | sting Practices: A | Literature Rev                                         | view                                    |  |  |  |
| Ohjaajat — Handledare — Supervisors                       |                    |                                                        |                                         |  |  |  |
| Prof. T. Mikkonen, Univ. Lect. AP. Tuovinen               |                    |                                                        |                                         |  |  |  |
| Työn laji — Arbetets art — Level                          | Aika — Datum — Mor | nth and year                                           | Sivumäärä — Sidoantal — Number of pages |  |  |  |
| Master's thesisJanuary 2, 202243 pages, 35 appendix pages |                    |                                                        |                                         |  |  |  |
| Tiivistelmä — Referat — Abstract                          |                    |                                                        |                                         |  |  |  |

A US government agency estimated the national cost of inadequate software testing to be \$60 billion annually, and that was 20 years ago. As the role of technology and software has been rapidly increasing worldwide for decades, it suffices to say that the worldwide fiscal effect of poor testing practices today is probably "quite a bit".

An increasing number of industry-focused survey studies on testing have been published worldwide in recent years, signalling an increased need to characterize the testing practices of the software development industry. These types of studies can help to guide future research efforts towards subjects that are meaningful to the industry, and provide practitioners with an opportunity to compare their own practice to those of their peers and recognize the main improvement areas.

As no secondary study devoted to these types of survey studies could be identified, the opportunity was seized to carry out a literature review was to find out what the data from these studies can tell us when aggregated. The precise topics focused on were the usage of test levels, test types, test design techniques, test tools and test automation.

Looking at these studies in aggregate tells us about some general trends: unit testing, functional testing and regression testing are popular everywhere, and also quite popular regardless of the surveyed population are performance testing and usability testing. The popularity of the other test levels and test types vary from survey to survey or region to region. Black-box techniques and experience-based techniques are more popular than white-box techniques. Exploratory testing, error guessing, use case testing and boundary value analysis are some of the most popular test design techniques. Much of the industry relies on manual testing over automated testing and/or have inadequately adopted the usage of testing tools.

#### ACM Computing Classification System (CCS)

Software and its engineering  $\rightarrow$  Software creation and management  $\rightarrow$  Software verification and validation

Avainsanat — Nyckelord — Keywords

software testing, industrial surveys

Säilytyspaikka — Förvaringsställe — Where deposited

Helsinki University Library

Muita tietoja — övriga uppgifter — Additional information

Software study track

# Contents

| 1        | Intr                 | roduction                                            | 1  |
|----------|----------------------|------------------------------------------------------|----|
| <b>2</b> | Bac                  | kground                                              | 3  |
|          | 2.1                  | Testing concepts and definitions                     | 3  |
|          | 2.2                  | Research context                                     | 6  |
| 3        | $\operatorname{Res}$ | earch method                                         | 9  |
|          | 3.1                  | Research questions                                   | 9  |
|          | 3.2                  | Search process                                       | 10 |
|          | 3.3                  | Exclusion criteria                                   | 11 |
|          | 3.4                  | Snowballing                                          | 12 |
|          | 3.5                  | Data extraction                                      | 13 |
| 4        | $\operatorname{Res}$ | ults 1                                               | 15 |
|          | 4.1                  | Overview of primary studies                          | 15 |
|          | 4.2                  | Test levels                                          | 19 |
|          | 4.3                  | Test types                                           | 21 |
|          | 4.4                  | Test design techniques                               | 23 |
|          | 4.5                  | Automation and tools                                 | 26 |
|          |                      | 4.5.1 Usage of automation and tools                  | 26 |
|          |                      | 4.5.2 Usage of specific tools for testing activities | 29 |
|          |                      | 4.5.3 How testing tools are acquired                 | 30 |
| <b>5</b> | Dise                 | cussion 3                                            | 31 |
|          | 5.1                  | Analysis                                             | 31 |
|          | 5.2                  | Research questions revisited                         | 33 |
|          | 5.3                  | Research validity                                    | 34 |
|          | 5.4                  | Future work                                          | 36 |

| 6 Conclusions    | 37 |
|------------------|----|
| Bibliography     | 38 |
| A Extracted data |    |

# 1 Introduction

Software is everywhere, and the primary method of performing quality assurance on software is to conduct software testing. Software testing cannot guarantee the absence of defects, but it can help to prevent them [Int15], and efforts to do so are proven to be worthwhile time and again, sometimes in spectacular fashion. For instance, a defect in a trading algorithm cost a company \$440 million in 30 minutes [Heu12] and another caused emergency services to be unavailable to over 10 million people for six hours [Fun14]. For a more grounded perspective, a likely outdated but often-cited estimate made in 2002 by the National Institute of Standards and Technology is that the cost of inadequate infrastructure for software testing in the US is \$59.5 billion [Tas02]. Undoubtedly, this issue is not specific to the US and as the role of technology and software increases worldwide, so does the importance of software testing.

This notion is supported by the fact that an increasing number of survey studies that aim to find out about the testing practices of the software industry are being carried out worldwide. Characterizing the testing practices of the software development industry provides a reference point for software professionals in their practice, helps to guide future research efforts towards subjects that are relevant to the industry, and helps to gauge the adoption rate of techniques that are of interest in academia. Recognizing the regional weaknesses in software testing practices could also be used as a starting point for discussions on curricular shortcomings, or the need to shift in attitudes on the organizational level.

Surprisingly, no previous secondary study devoted to the subject of the testing practices of the software industry seems to exist. So, while conducting another survey on the topic would be a viable way to contribute, perhaps even more warranted is a secondary study on the subject. Therefore, the contribution of this thesis is a literature review on the topic to find out what looking at existing data in aggregate tells us about the testing practices of the industry. Specifically, the focus is on a set of topics that surveys on testing practices are likely to cover: the usage of test levels, test types, test design techniques, test tools and test automation.

The remainder of this thesis is structured as follows. First, background information is discussed in chapter 2. Chapter 3 presents the research methods, i.e., how the literature

review was carried out. The results are presented in chapter 4, followed by discussion in chapter 5. Finally, the conclusions are presented in chapter 6.

# 2 Background

This chapter consists of two parts: first, we establish relevant testing concepts and definitions in section 2.1 and then the research context is discussed in section 2.2.

## 2.1 Testing concepts and definitions

There are competing standards when it comes to basic software testing terminology: the Engineering Body of Knowledge (SWEBOK) [ISO15], the International Software Testing Qualifications Board Certified Tester Foundation Level Syllabus (ISTQB-CTFL) [Int18] and the international standard on software testing ISO/IEC/IEEE 29119 [ISO13]. It is therefore particularly important in this work to establish testing concepts and terminology in order to provide a cohesive structure when presenting the results and to avoid confusion. The definitions presented are not strictly based on any one of the aforementioned authoritative sources, but draw from each.

**Testing** is a group of activities performed to assess the quality of software. Testing always occurs on one of four **test levels**, namely

- unit testing (or component testing) if the target is an isolated software component,
- integration testing if the target is an isolated subset of a software system,
- system testing if the target is an entire software system, or
- acceptance testing if the target is an entire software system *and* the goal is to assess whether a complete software system is acceptable to the end-user [ISO13; ISO15; Int18].

Testing activities can be grouped into one or more **test types** based on their objectives. Oftentimes, the objective is to assess a specific quality characteristic of software. A fairly comprehensive, but non-exhaustive list of test types that assess quality characteristics from ISO/IEC/IEEE 29119 consists of

• **functional testing**, which evaluates how well the functionality of a product meets explicit and implicit requirements of the product under specific conditions,

- **compatibility testing**, which evaluates how well a group of components or systems interoperate on the same software environment or hardware,
- **usability testing**, which evaluates how easily and satisfactorily specific users, in a specific context, are able to use the product for its intended purpose,
- **reliability testing**, which evaluates how well a component or a system functions in specific conditions over a period of time,
- security testing, which evaluates how well access to data and data operations is restricted only to persons or systems with authorization to do so,
- **maintainability testing**, which evaluates how easily changes can be made to the product,
- **portability testing**, which evaluates how easily a component or system can be made available on other hardware, software or in other environments, and
- **performance testing**, which evaluates the performance of a product in relation to the resources used under specific conditions [ISO13].

Practitioners will often refer to the group of test types that focus on a specific quality characteristic excluding functional testing as **non-functional testing** [ISO13]. Some notable test types which are not tied down to a specific quality characteristic are:

- **regression testing**, to re-test already tested software to assess whether changes to software have had any undesirable effects,
- user acceptance testing (UAT), a form of acceptance testing carried out by the customer, to verify that the software meets their requirements,
- **alpha testing**, a form of acceptance testing feedback is obtained by allowing a limited number of users to use the software before it is released. Useful for off-the-shelf software, where UAT is not applicable [Int18].

As the objectives of testing are innumerable, so is the number of test types. Others may come up in the results but are likely not significant enough to warrant discussion. It should be noted that a test type can be applicable to more than one test level. For example, both functional testing and performance testing could be conducted on both the integration and system test levels in one project. Acceptance testing, under the given definitions, could also be considered as a special kind of test type that only applies to the system test level. Defining test level and test types in such a way helps to accommodate studies that use the SWEBOK model, under which acceptance testing is likened to test types instead of test levels [ISO15]. Specific forms of acceptance testing, e.g. UAT and alpha testing are discussed as test types.

In testing, there is the matter of how test cases are derived. The techniques used for this purpose are called **test design techniques**. Test cases can be derived using specifications (e.g. requirements), structure (e.g. source code), or experience. Using specifications to identify test cases is called **black-box testing**, and using source code is called **white-box testing**. Definitions have been omitted for brevity; refer to SWEBOK for definitions [ISO15]. Table 2.1 lists various test design techniques.

| White-box        | Black-box                | Experience-based    |  |  |
|------------------|--------------------------|---------------------|--|--|
| Control Flow     | Equivalence partitioning | Ad hoc testing      |  |  |
| Data Flow        | Boundary value analysis  | Exploratory testing |  |  |
|                  | (BVA)                    |                     |  |  |
| Error guessing   | Pairwise Testing         | Error guessing      |  |  |
| Mutation testing | Random testing           |                     |  |  |
| Decision Tables  |                          |                     |  |  |

 Table 2.1: Non-exhaustive list of test design techniques.

The international standard on software testing ISO/IEC/IEEE 29119 uses three layers to describe software testing in the context of organizations and projects [ISO13]. First, there is the organizational layer, the context of which is made up of rules, regulations, standards and laws. In mature organizations, formalized testing policies and strategies may be produced based on these inputs. The organizational layer provides context, along with the project context, for the middle layer, which is the project layer. This layer may also include some formal planning and strategizing. It is also the layer where it is determined whether a sequential development model like the waterfall model or an iterative model like agile is used, among other things which influence day-to-day testing activities in the project. Thus, the project layer provides context for the final layer, the testing layer, which deals with the nuts and bolts of testing such as test levels, test types, test design techniques, test completion criteria and test automation. It is likely a reasonable assumption that trends observed in the testing layer are often results of trends in the project layer. For instance, the transition towards agile practices and continuous integration has almost certainly increased the amount of regression testing conducted. However, there is no intention of exploring which factors have shaped testing practices in the context of organizations and projects; the goal is to observe industry trends and patterns of the software testing layer in isolation.

### 2.2 Research context

There are a few approaches to learning about the testing practices used in the software industry. One approach is to analyse publicly available data, such as job postings [Kas+21; CLR20; FS19] and public repositories [LSM20]. Using this approach allows for an efficient, automated data gathering process but can be limited by the data which is available and the lack of structure can cause complications. The more common alternative involves reaching out to members of the industry directly by means of a questionnaire survey, interviews, or a combination of the two. Broadly speaking, these types of studies can be categorized into qualitative and quantitative studies. Qualitative studies on the topic, usually case studies, can provide detailed insight on the testing process of a company or handful of companies, but their results are usually not generalizable to the software industry as a whole as the number of subjects is small. In order to answer questions such as "how popular is the software testing practice X?", perhaps the best tool for the job is industrial surveys.

With surveys, there is the question of geographical coverage. To provide a generalizable answer to a question about the popularity of a testing practice, sampling would need to be done on developers and testers all around the world. Such surveys can and have been done [IST16; IST18], but much more common are surveys targeting a specific country or region, no doubt because it is more practical to conduct surveys on a smaller scale. This limitation is, however, a common source of criticism for industrial surveys, and is a factor in why industrial surveys can be difficult to get published [TR13]. The aim of this thesis is to learn about the testing practices used in the industry by looking at industrial surveys in aggregate. One motivation for this study is that the limited geographical coverage of any individual paper can be mitigated to a degree by being reduced to a single reference point amongst many.

While a brief discussion on existing work is standard practice for any study, in one survey study on software testing practices an abridged literature review was carried out prior to conducting the survey [Dia+17]. The aggregated results of their review that are most relevant to this study were that unit testing is the most popular testing level and that manual testing is performed more often than automated testing. To the best of my knowledge, this thesis is the first study that is primarily a literature review focusing on the software testing practices of the industry, questionnaire survey-based or otherwise.

Most research efforts in software testing are not industry-centric, instead, they are directed towards topics that by most indications are disconnected from the mainstream software industry and almost seem doomed to remain as such for perpetuity. A prime example of this is mutation testing. The method has been an increasingly prominent research area since its inception over 50 years ago [DS78; JH11], to the point of becoming one of the most actively researched software testing methods, with seven secondary studies covering the topic as of 2016 [GM16]. At a cursory glance, the number appears to have at least doubled in the last five years [Pap+19; SSL17; Piz+19; FPO18; GGS17; JSR17; ZPZ18; PV19; DA16]. Despite all the research, the issue of industry adoption continues to be offhandedly recognized even in the most recent research on the topic [Pet+21; BW21]. ISTQB, the de facto body of software testing certification makes no mention of mutation testing in any of their syllabuses according to the ISTQB Glossary [IST21a]. Mutation testing is not an isolated case in this regard. Search-based testing, combinatorial testing, symbolic execution and random testing have all been the subject of much research [GM16], yet they are only mentioned in passing by the material of the ISTQB, if at all. In fairness, ISTQB devotes a syllabus for model-based testing, which was covered by fifteen secondary studies as of 2016, more than any other testing method [Int15; GM16]. As illustrated by Figure 2.1, according to Google Trends, interest in model-based testing has nevertheless remained stagnant and on the same level as mutation testing for over 10 years. The points presented here are meant to be taken as indicators, not hard evidence. Industrial surveys, however, might be able to more reliably tell us about the adoption rate of these highly researched software testing practices.



Figure 2.1: Interest over time on various software testing topics. Integration testing, which arguably is an industry staple, is included as a reference point. Data source: Google Trends (https://www.google.com/trends).

## 3 Research method

The research method used in this thesis is the (systematic) literature review. The steps that are taken largely draw from the guidelines presented in [Kee+07], although strict adherence has not been attempted, particularly, a quality assessment of the primary studies was not made. This field of research does not seem to be broad and mature enough for statistical analysis, an activity that would call for full adherence. Instead, a somewhat more lenient approach was taken, as this work is more in the realm of general, high-level observations of possible trends and patterns. More on this topic is available in the discussion on research validity (section 5.3).

Each section that follows corresponds to a consecutive step taken in the process conducting this study prior to synthesizing the results: formulating research questions (section 3.1), seeking out potential primary studies (section 3.2), filtering irrelevant primary studies (section 3.3), snowballing (section 3.4) and data extraction (section 3.5).

### 3.1 Research questions

The basic research question of this study is:

• RQ: What does descriptive quantitative data from questionnaire surveys tell us about the testing practices of the general software industry?

Reviewing all aspects of testing would be too laborious for a master's thesis; instead, a few key topics which are interconnected have been selected, and consequently, some more granular research questions are formulated: In the industry,

- (RQ1) How broadly are the test levels used, and what is their relative popularity?
- (RQ2) What are the most popular test types?
- (RQ3) What are the most popular test techniques?
- (RQ4) What is known about the usage of test tools/automation?

### **3.2** Search process

Primary studies were identified using the following electronic databases relevant to computer science:

- ACM Digital Library (Association for Computing Machinery)
- IEEE Xplore (Institute of Electrical and Electronics Engineers)
- Scopus

After a few preliminary rounds of the search process, the following search terms were settled upon:

- software AND
- testing AND
- practices AND
- survey AND
- industry OR industrial OR organization OR company OR practitioner OR professional

For each database, a search query was constructed in such a way that each group of keywords had to match either the title, abstract or keywords of a study. This is the default behaviour in IEEE Xplore and Scopus. The keywords have been constructed using the high-level research question for this study, and not the more specific ones, i.e., using keywords such as "tools", "automation" or "unit testing". The reasoning behind this is that based on early rounds of the search process, had this been done, it would be more likely for relevant literature to not be found as the terms are not necessarily used in the title, abstract or keywords of a survey study that broadly observes testing practices. While this led to a more laborious search process, it also provided some flexibility with regard to adjustments to the granular research questions.

The databases were queried on 8.11.2021 and the search queries used are presented in Table 3.1. The number of results for each database is presented in Table 3.2.

Table 3.1: The search queries used for each database.

| Database | Search query                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACM      | (Title:(software) OR Abstract:(software) OR Keyword:(software)) AND<br>(Title:(testing) OR Abstract:(testing) OR Keyword:(testing)) AND (Ti-<br>tle:(practices) OR Abstract:(practices) OR Keyword:(practices)) AND<br>(Title:(survey) OR Abstract:(survey) OR Keyword:(survey)) AND (Ti-<br>tle:(industry OR industrial OR organization OR company OR practitioner<br>OR professional) OR Abstract:(industry OR industrial OR organization OR<br>company OR practitioner OR professional) OR Keyword:(industry OR in-<br>dustrial OR organization OR company OR practitioner OR professional)) |
| IEEE     | software AND testing AND practices AND survey AND (industry OR industrial OR organization OR company OR practitioner OR professional)                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Scopus   | TITLE-ABS-KEY(software AND testing AND practices AND survey AND (industry OR industrial OR organization OR company OR practitioner OR professional)) AND (LIMIT-TO (SUBJAREA, "COMP"))                                                                                                                                                                                                                                                                                                                                                                                                          |

 Table 3.2: Number of studies per database.

| Database | Number of results |
|----------|-------------------|
| ACM      | 251               |
| IEEE     | 186               |
| Scopus   | 257               |
| Total    | 694               |

## 3.3 Exclusion criteria

The following exclusion criteria were used to narrow down the set of papers to only the ones relevant to this research:

- EC1: Published before 2001
- EC2: Published in a language other than English

- EC3: Is not a survey study with a sample size of at least 20
- EC4: Has an insufficient focus on testing practices of the general software industry

Applying the exclusion criteria yielded a total of 16 papers. The intermediate number of results after removing duplicates and applying each exclusion criteria are presented in Table 3.3.

| Phase                 | Number of results |
|-----------------------|-------------------|
| Initial               | 694               |
| Removal of duplicates | 495               |
| Applying EC1          | 448               |
| Applying EC2          | 445               |
| Applying EC3 & EC4    | 16                |

 Table 3.3:
 The process of narrowing down the selection of papers.

#### 3.4 Snowballing

Backwards snowballing is the process of checking the references of a set of seed papers for potential sources to be included in a review. In forwards snowballing, the referees are checked instead. Snowballing can be repeated iteratively on the additional sources until no new sources are found.

To improve the coverage of the review, both forwards and backwards snowballing was applied to the set of 16 papers. On the first iteration, two survey studies published in scientific venues which passed the exclusion criteria were identified. The snowballing process was terminated after a second iteration of snowballing, as no new papers were found. In addition, the backward snowballing process allowed for some grey literature to be included, specifically, surveys published by the ISTQB or its member boards. Fifteen such surveys are available on the ISTQB website [IST21b], of which nine passed the exclusion criteria. Not all of them were reachable via direct snowballing, but they were included nevertheless due to the high relevance. Table 3.4 summarizes the snowballing process.

| Set                                         | Number of results |
|---------------------------------------------|-------------------|
| Initial papers                              | 16                |
| Scientific literature added via snowballing | 2                 |
| ISTQB surveys added                         | 9                 |
| Final number of surveys included in review  | 27                |

Table 3.4:The snowballing process.

## 3.5 Data extraction

The following data was extracted for each paper:

- Study metadata
  - Title
  - Year
  - Author(s)
  - Reference
- Survey metadata
  - Year(s) conducted
  - Number of responses
  - Target population (individuals, organizations...)
  - Region/scope
- Quantitative findings pertaining to the usage of
  - test levels (RQ1)
  - test types (RQ2)
  - test design techniques (RQ3)
  - automation and tools (RQ4)

The extracted data is available in full in Appendix A. If otherwise pertinent data was not extracted for some reason, e.g., due to suspicion of faulty data or misreporting, it was noted with justifications. For Likert scale questions, the mode and median were extracted as they best measure the central tendency for Likert data [BB12]. During data extraction, several times an opportunity arose to convert Likert data into binary data with the intention of it comparing to data from other studies obtained using a yes/no or multiple-choice question. For instance, from a Likert scale question with options ranging from "never" to "always", one could infer "never" to be equivalent to "no", and the remaining options to be equivalent to "yes". This was initially done in this study, but it was subsequently undone as it quickly became apparent the data obtained this way were consistently outliers, suggesting that the inference is not correct.

## 4 Results

In this chapter, the results of this study are presented. First, an overview of the studies and the respective surveys is presented in section 4.1. The remaining four sections of this chapter each correspond with the research question of this study, starting with test levels in section 4.2, followed by test types in section 4.3, test design techniques in section 4.4 and lastly automation and tools in section 4.5.

## 4.1 Overview of primary studies

Table 4.1 provides an overview of the studies included in this literature review. Something worth noting is the steady increase in the number of studies on the topic; even though 20 years' worth of literature is under examination, around half the studies have been published in just the last 5 years.

| Id | Year | Author(s)             | Title                                                                                                                               | Reference  |
|----|------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1  | 2004 | Geras et al.          | A survey of software testing practices<br>in Alberta                                                                                | [GSM04]    |
| 2  | 2004 | Ng et al.             | A preliminary survey on software test-<br>ing practices in Australia                                                                | [Ng+04]    |
| 3  | 2010 | Garousi et al.        | A replicated survey of software testing<br>practices in the Canadian province of<br>Alberta: What has changed from 2004<br>to 2009? | [GV10]     |
| 4  | 2010 | Causevic et al.       | An industrial survey on contemporary<br>aspects of software testing                                                                 | [CSP10]    |
| 5  | 2011 | Haberl et al.         | Software Test in Practice                                                                                                           | [Hab+11]   |
| 6  | 2012 | Lee et al.            | Survey on software testing practices                                                                                                | [LKL12]    |
| 7  | 2012 | Turkish Testing Board | Turkey Software Quality Report 2011-2012                                                                                            | [Tur12]    |
| 8  | 2013 | Garousi and Zhi       | A survey of software testing practices in Canada                                                                                    | [GZ13]     |
| 9  | 2013 | Turkish Testing Board | Turkey Software Quality Report 2012-2013                                                                                            | [Tur13]    |
| 10 | 2014 | Daka and Fraser       | A survey on unit testing practices and problems                                                                                     | [DF14]     |
| 11 | 2014 | Turkish Testing Board | Turkey Software Quality Report 2013-<br>2014                                                                                        | [Tur14]    |
| 12 | 2015 | Garousi et al.        | A survey of software engineering prac-                                                                                              | [Gar+15a], |
|    |      |                       | tices in Turkey                                                                                                                     | [Gar+15b]  |
| 13 | 2016 | ISTQB                 | ISTQB® Worldwide Software Testing<br>Practices Survey 2015-16                                                                       | [IST16]    |
| 14 | 2016 | Turkish Testing Board | Turkey Software Quality Report 2015-<br>2016                                                                                        | [Tur16]    |
| 15 | 2017 | Dias-Neto et al.      | Toward the characterization of soft-<br>ware testing practices in South Amer-<br>ica: looking at Brazil and Uruguay                 | [Dia+17]   |

 Table 4.1: Basic information about the studies included in the review.

| 16 | 2017 | Kassab et al.         | Software Testing: The State of the Practice                                                                                               | [KDL17]  |
|----|------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 17 | 2017 | Felderer and Auer     | Software quality assurance during im-<br>plementation: Results of a survey in<br>software houses from Germany, Austria<br>and Switzerland | [FA17]   |
| 18 | 2018 | Hynninen et al.       | Software testing: Survey of the indus-<br>try practices                                                                                   | [Hyn+18] |
| 19 | 2018 | Wang and Galster      | Development processes and practices in<br>a small but growing software industry:<br>A practitioner survey in New Zealand                  | [WG18]   |
| 20 | 2018 | ISTQB                 | ISTQB® Worldwide Software Testing<br>Practices Survey 2017-18                                                                             | [IST18]  |
| 21 | 2018 | Turkish Testing Board | Turkey Software Quality Report 2017-<br>2018                                                                                              | [Tur18]  |
| 22 | 2019 | Quesada-López et al.  | A survey of software testing practices<br>in Costa Rica                                                                                   | [QHJ19]  |
| 23 | 2019 | Turkish Testing Board | Turkey Software Quality Report 2018-<br>2019                                                                                              | [Tur19]  |
| 24 | 2020 | Latif et al.          | A preliminary survey on software test-<br>ing practices in Khyber PakhtunKhwa<br>region of Pakistan                                       | [LR20]   |
| 25 | 2020 | Vukovic et al.        | An empirical investigation of software<br>testing methods and techniques in the<br>province of Vojvodina                                  | [Vuk+20] |
| 26 | 2021 | Junior et al.         | Experiences and Practices in GUI<br>Functional Testing: A Software Prac-<br>titioners' View                                               | [Jun+21] |
| 27 | 2021 | Carlos and Ibrahim    | Practices in software testing in<br>Cameroon challenges and perspectives                                                                  | [MI21]   |

Table 4.2 provides some additional data about the survey conducted in each study. Most surveys were conducted around 1-2 years before the publication of the study. Around two-thirds of the studies target individual practitioners, and the rest target organizations and companies. The median number of responses is around 100.

| Study | Year(s)   | Responses | Target population      | Region/scope        |  |  |
|-------|-----------|-----------|------------------------|---------------------|--|--|
| id    | conducted | analyzed  |                        |                     |  |  |
| 1     | 2002      | 60        | Software organizations | Alberta, Canada     |  |  |
| 2     | 2002-03   | 65        | Software organizations | Australia           |  |  |
| 3     | 2009      | 53        | Software organizations | Alberta, Canada     |  |  |
| 4     | 2009      | 83        | Software companies     | Europe              |  |  |
| 5     | 2011      | 1623      | Software professionals | Central Europe      |  |  |
| 6     | Unknown   | 24        | Software professionals | Major companies     |  |  |
| 7     | 2011-12   | Unknown   | Software professionals | Turkey              |  |  |
| 8     | 2010      | 246       | Software practitioners | Canada              |  |  |
| 9     | 2012-13   | Unknown   | Software professionals | Turkey              |  |  |
| 10    | 2013      | 171       | Software developers    | Worldwide           |  |  |
| 11    | 2013-14   | Unknown   | Software professionals | Turkey              |  |  |
| 12    | 2013      | 202       | Software practitioners | Turkey              |  |  |
| 13    | 2015      | 3200      | Software professionals | Worldwide           |  |  |
| 14    | 2015-16   | Unknown   | Software professionals | Turkey              |  |  |
| 15    | 2015      | 150       | Testing practitioners  | Brazil & Uruguay    |  |  |
| 16    | 2015      | 167       | Software professionals | USA                 |  |  |
| 17    | 2015      | 57        | Software houses        | Central Europe      |  |  |
| 18    | 2017      | 33        | Software organizations | Finland             |  |  |
| 19    | 2017-18   | 101       | Software developers    | New Zealand         |  |  |
| 20    | 2017-18   | 2000      | Software professionals | Worldwide           |  |  |
| 21    | 2017-18   | 300       | Software professionals | Turkey              |  |  |
| 22    | 2018      | 92        | Software professionals | Costa Rica          |  |  |
| 23    | 2018-19   | Unknown   | Software professionals | Turkey              |  |  |
| 24    | 2018      | 70        | Software organizations | Khyber PakhtunKhwa, |  |  |
|       |           |           |                        | Pakistan            |  |  |
| 25    | Unknown   | 83/24     | Software profession-   | Vojvodina, Serbia   |  |  |
|       |           |           | als/Software organiza- |                     |  |  |
|       |           |           | tions                  |                     |  |  |
| 26    | 2021      | 222       | Testing professionals  | Brazil              |  |  |
| 27    | Unknown   | 30        | Software companies     | Cameroon            |  |  |

 Table 4.2: Basic information about the surveys.

Figure 4.1 visualizes the geographical coverage of the studies. The most covered regions are Turkey (7 studies), largely thanks to the surveys carried out by the Turkish Testing Board (TTB), and Canada (3 studies). The coverage from five studies is not included (or only partially included) because the geographical distribution was not reported. This includes two worldwide ISTQB studies, which both received responses from around 90 countries <sup>13</sup> <sup>20</sup>.



Figure 4.1: The geographical coverage of the primary studies.

### 4.2 Test levels

Each of the test levels tend to be used more than two-thirds of survey respondents, but the results are only consistent for unit testing; see table 4.3 for the raw data on the popularity of test levels, and table 4.4 for basic statistics about the results. It should be noted that no claims are being made about the statistical significance of this data; the quality of the underlying studies is not necessarily sufficient for meta-analysis, and the studies have not been weighted. The purpose of displaying statistics is only to aid in the digestion of the findings.

| Study id<br>Test level | 1  | 3  | 4   | 8  | 12  | 15 | 16 | 17 | 19 | 22 | 27 |
|------------------------|----|----|-----|----|-----|----|----|----|----|----|----|
| Unit                   | 92 | 96 | 5/7 | 80 | 2/4 | 76 | 72 | 68 | 73 | 79 | 73 |
| Integration            |    | 37 |     |    | 3/4 | 82 | 67 |    | 48 | 81 | 77 |
| System                 | 92 | 97 | 6/7 | 78 | 3/4 | 88 | 81 |    | 26 | 83 | 27 |
| Acceptance             | 80 | 88 |     |    |     | 83 | 72 |    | 45 | 88 | 27 |

**Table 4.3:** The findings on the usage of the test levels in the reviewed studies. Whole numbers represent the percentage of respondents who indicated that they conduct testing on the test level. Fractions loosely represent the result of a Likert scale question (median value; 0 ('Never') is lowest).

Table 4.4: Basic statistics on the (non-Likert) findings concerning the popularity of the test levels.

| Test type   | Min | Max | Mean | Median | Standard<br>deviation |
|-------------|-----|-----|------|--------|-----------------------|
| Unit        | 68  | 96  | 79   | 76     | 9                     |
| Integration | 37  | 82  | 65   | 72     | 19                    |
| System      | 26  | 97  | 72   | 82     | 28                    |
| Acceptance  | 27  | 88  | 69   | 80     | 23                    |

The popularity of integration testing, system testing and acceptance testing test level can vary greatly depending on the region. They have each been a low outlier in at least one study: integration testing was by far the least popular test level in Alberta <sup>3</sup> and system testing was least popular by some margin in New Zealand <sup>19</sup>. System testing and acceptance testing were both clearly less popular than unit testing and integration testing in Cameroon <sup>27</sup>.

The positions of survey respondents may have a non-negligible impact on the outcomes of survey studies on software testing practices such as test level usage. One study reported their figures on the popularity of test levels for respondents in management positions and technical respondents separately, with 72% of respondents in management positions responding affirmatively to using test levels while the corresponding figure for non-management respondents was 92%<sup>1</sup>. It was suggested the difference may be attributed to a lack of communication between technical and managerial project members, as managerial respondents may simply not be aware of the more technical testing levels such as unit testing being performed. To mitigate this issue, the values for whichever figure was higher was reported in table 4.3, as they were presumably more accurate. However, many of the reviewed studies have both technical and managerial respondents, and may have been affected by this problem.

Even with a relatively high number of primary studies covering the topic, the geographical coverage of data on test level usage is lacking. No broad surveys (e.g. ISTQB surveys) have explored the topic, and for instance, not a single data point exists on the usage of system testing in the entire Eurasian mainland. The data that does exist is somewhat skewed towards North America (5/11 studies).

### 4.3 Test types

The test types which are consistently shown to be popular are, in decreasing order of popularity, functional testing, regression testing, performance testing and usability testing. See table 4.5 for the raw data on the popularity of test types, and table 4.6 for basic statistics on the most prominent test types. The relative popularity of the aforementioned test types is consistent across the studies, with the exception of study 27, where usability testing was more popular than regression testing and performance testing. This, combined with the fact that the variance in the results on these test types is quite low provides some confidence in accuracy of these results. Although security is regarded as prominent among survey designers, having the second-highest number of data points, its popularity in the industry varies greatly depending on the surveyed population. As for the remaining test types, less data is available, so the results should be interpreted with care. There are not very many data points for types of acceptance testing, only four for UAT and two for alpha testing, each hovering around 40-60%. In a few studies, stress testing was used by 60% of respondents, complementing the findings on performance testing. There are a dozen "Ility"-test types which do not appear to be in contention for being among the most popular test types.

Table 4.5: The findings on the usage of the test types in the reviewed studies. Types are sorted by the number of data points, descending. Whole numbers represent the percentage of respondents who indicated that they conduct testing on the test level. Fractions loosely represent the result of a Likert scale question (median value; 0 ('Never') is lowest). Only types reported on by two or more studies are included.

| Study id         | 1  | 2  | 3  | 4   | 5  | 7  | 8  | 12  | 13 | 15 | 16 | 19 | 20 | 22 | 23 | 27 |
|------------------|----|----|----|-----|----|----|----|-----|----|----|----|----|----|----|----|----|
| Test type        |    |    |    |     |    |    |    |     |    |    |    |    |    |    |    |    |
| Performance      |    |    |    | 5/7 | 50 | 83 | 56 | 2/4 | 63 | 70 | 63 |    | 61 | 71 | 64 | 43 |
| Security         | 44 |    | 13 |     | 26 |    |    | 2/4 | 39 | 70 |    |    | 45 | 71 | 33 | 43 |
| Regression       | 72 | 69 | 68 |     | 80 |    |    |     |    | 83 | 63 |    |    | 79 |    | 53 |
| Functional       |    |    |    | 6/7 |    | 98 | 78 | 3/4 |    |    | 91 |    | 83 |    | 92 |    |
| Usability        | 53 |    | 47 |     |    | 43 |    |     | 56 |    |    |    | 44 |    | 62 | 63 |
| Scalability      |    |    |    |     |    |    |    |     | 15 |    | 19 |    | 16 |    | 8  | 3  |
| UAT              |    | 48 |    |     |    |    | 56 | 3/4 |    |    |    |    | 66 |    |    |    |
| Stress           | 63 |    | 57 |     |    |    |    | 2/4 |    |    | 30 |    |    |    |    |    |
| Interoperability |    |    |    |     |    |    |    |     | 19 |    | 21 |    | 15 |    | 12 |    |
| Reliability      |    |    |    |     |    |    |    |     | 31 |    | 41 |    | 22 |    | 26 |    |
| Recoverability   |    |    |    |     |    |    |    |     | 13 |    |    |    | 10 |    | 11 | 7  |
| Accessibility    |    |    |    |     |    |    |    |     | 29 |    |    |    | 28 |    | 35 |    |
| Availability     |    |    |    |     |    |    |    |     | 26 |    |    |    | 20 |    | 28 |    |
| Maintainability  |    |    |    |     |    |    |    |     | 19 |    |    |    | 19 |    | 25 |    |
| Testability      |    |    |    |     |    |    |    |     | 28 |    |    |    | 21 |    | 34 |    |
| Operability      |    |    |    |     |    |    |    |     | 18 |    |    |    | 13 |    | 13 |    |
| Portability      |    |    |    |     |    |    |    |     | 11 |    |    |    | 11 |    | 13 |    |
| Supportability   |    |    |    |     |    |    |    |     | 8  |    |    |    | 7  |    | 8  |    |
| Extensibility    |    |    |    |     |    |    |    |     | 5  |    |    |    | 4  |    | 8  |    |
| Efficiency       |    |    |    |     |    |    |    |     | 26 |    |    |    | 19 |    |    |    |
| Alpha            | 40 |    | 50 |     |    |    |    |     |    |    |    |    |    |    |    |    |

**Table 4.6:** Basic statistics on the (non-Likert) findings concerning the popularity of of the most prominent test types.

| Test level  | Min | Max | Mean | Median | Standard deviation |
|-------------|-----|-----|------|--------|--------------------|
| Functional  | 78  | 98  | 88   | 91     | 8                  |
| Regression  | 53  | 83  | 71   | 71     | 10                 |
| Performance | 43  | 83  | 64   | 63     | 11                 |
| Usability   | 43  | 63  | 53   | 53     | 8                  |
| Security    | 13  | 71  | 43   | 43     | 19                 |

As with test levels, the outcomes of results on the popularity of test types may be affected by the positions of the respondents. While technical respondents more commonly reported that test levels were used, managerial respondents were twice as likely to report that their organization conducted usability testing <sup>1</sup>. Again, it has been presumed that whichever figure is higher is also more accurate, and again, the issue may have affected other studies. There are some quirks when it comes to the usage of the term functional testing in the literature which sometimes gives pause when aggregating results. The problem is perhaps best explained with a quote from one of the primary studies, describing a phase in their survey design:

The goal behind this phase in our survey design was to ensure that the terminology used in our survey was familiar to a reasonable ratio of the audience. This is since, unfortunately, the software testing terminology used in academia versus industry can sometimes be slightly different or even confusing, e.g., system testing and functional testing.<sup>8</sup>

In the study, the terms system testing and functional testing were used interchangeably, and sometimes "functional/system testing" was used. One study by the TTB reported on "functional/regression testing" <sup>7</sup>, and another study reported on "functional blackbox system testing" <sup>4</sup>. As the relatively high popularity of functional testing is a fairly uncontroversial finding, the general confusion around the term, and the tendency to have it attached to other qualifiers is not necessarily a problem when interpreting the results, but may be worth noting nevertheless.

#### 4.4 Test design techniques

Before presenting the findings on the popularity of test design techniques, it should be noted that the results are somewhat less clear than those pertaining to test levels and test types. This is largely because the concept of test design techniques and the terminology used to describe test design techniques is less established that of test types and test levels. It is not uncommon for studies to report on test design techniques which are not recognized by SWEBOK [ISO15] or the ISTQB Glossary [IST21a], e.g. "symbolic analysis"<sup>2</sup>. As an example of inconsistency in terminology, it is probable that the following terms which have been used to describe or label data on the same technique: "Equivalence", "Equivalence classing", "Equivalence partitioning" <sup>5</sup> <sup>11</sup>, "Category partitioning" <sup>9</sup> <sup>12</sup>, "Equivalence partitioning" <sup>20</sup>, "Equivalence class partitioning" <sup>25</sup> and "Partitioned analysis" <sup>27</sup>. It is worth considering whether the respondents to a particular survey have necessarily been aware of the specific term used in the survey. Data on specific techniques has been grouped somewhat conservatively so that this can be accounted for, particularly for outliers.

The data on the popularity of test design techniques, presented in table 4.7, suggests that experience-based techniques and black-box techniques are more popular than white-box techniques. In only two instances did over 50% of respondents indicate that they use white-box test design techniques  $^{5\ 25}$ , and in each instance black-box techniques and experience-based techniques were more popular when data was available. Not in a single study was a white-box technique most popular. It is difficult to tell from this data whether experience-based techniques or black-box techniques are more popular.

As for individual test design techniques, the data is quite scattered and there is not enough data on many techniques to give a definitive answer. The individual techniques which somewhat stand out as popular are error guessing, exploratory testing, use case testing and boundary value analysis.

#### 4.5. AUTOMATION AND TOOLS

**Table 4.7:** Summary of findings on the usage of the test design techniques from various studies. Whole numbers represent the percentage of respondents who indicated that they use the test design technique. Fractions loosely represent the result of a Likert scale question (median value; 0 ('Never') is lowest).

| Study id                                                                                          | 1              | 2              | 3        | 4    | 5               | 8  | 10  | 11              | 12 | 13       | 15 | 16 | 20              | 22 | 23              | 25         | 27  |
|---------------------------------------------------------------------------------------------------|----------------|----------------|----------|------|-----------------|----|-----|-----------------|----|----------|----|----|-----------------|----|-----------------|------------|-----|
| Experience-based                                                                                  |                |                |          |      | 95              | 38 |     |                 | 49 |          |    |    |                 |    |                 |            |     |
| Tester skill<br>Error guessing<br>Exploratory                                                     | 91             |                | 91       |      | 85              | 5  |     | 54<br>49        |    | 37<br>66 | 81 |    | $\frac{36}{67}$ | 69 | 43<br>42        | 2/4        |     |
| Exploratory (w/o objectives)<br>Exploratory (w/objectives)<br>Fault attack with defect checklists |                |                | 33       |      | 66<br>33<br>22  |    |     |                 |    |          |    |    |                 |    |                 |            |     |
| Attacks                                                                                           |                | 45             |          | c /7 | 07              |    |     | 22              |    | 10       |    | 70 | 9               |    | 13              | 00         |     |
| Black-box                                                                                         |                | 45             |          | 6/7  | 97              |    |     |                 |    |          |    | 78 |                 |    |                 | 92         |     |
| Customer requirements<br>Functionality testing<br>Use case testing                                | 72             |                | 78       |      | 82<br>77        |    |     | 76              |    | 71       |    |    | 73              |    | 69              |            |     |
| User story testing<br>Model-based testing                                                         |                |                |          |      |                 | 15 |     | 60              | 22 | E 4      |    |    | 50              |    | 61              |            |     |
| Risks<br>Cause effect graphs                                                                      | $\frac{43}{3}$ |                | 20<br>10 |      |                 |    |     | 00              |    | 04       |    |    | 50              |    | 01              | 24         |     |
| Out of range<br>Boundary values                                                                   | 52<br>28       |                | 47<br>45 |      |                 |    |     |                 |    |          |    |    |                 |    |                 |            |     |
| Boundary value analysis<br>Decision tables                                                        | 10             |                | 8        |      | $\frac{68}{33}$ | 28 |     | $\frac{41}{32}$ | 24 | 22       |    |    | $52 \\ 29$      |    | $\frac{38}{26}$ | 60         |     |
| Equivalence partitioning<br>Partitioned analysis                                                  | 5              |                | 16       |      | 61              | 24 |     | 16              | 24 | 34       |    |    | 36              |    | 25              | 22         | 13  |
| Random testing<br>State transition testing                                                        | 17             |                | 00       |      | 39<br>38        |    |     | 24              |    | 21       |    |    | 21              |    |                 |            |     |
| States<br>Pairwise testing<br>Combinatorial test techniques                                       | 17             |                | 22       |      | 15              |    |     | 10              |    | 13       |    |    | 13              |    | 9               | 49         |     |
| Classification tree method                                                                        |                |                |          |      | 15              |    |     | 11              |    | 7        |    |    | 6               |    | 15              |            |     |
| White-box                                                                                         |                | 25             |          |      | 62              | 22 |     |                 |    |          |    | 42 |                 |    |                 | 78         |     |
| Control flow graphs                                                                               | 5              | 20             | 10       |      |                 |    |     |                 |    |          |    |    |                 |    |                 | 45         |     |
| Mutation analysis/testing<br>Symbolic analysis                                                    |                | $\frac{28}{5}$ |          |      |                 | 29 | 4/6 |                 |    |          |    |    |                 |    |                 |            | 0/5 |
| Statement coverage<br>Decision/branch coverage                                                    |                | -              |          |      | 42<br>36        |    |     | $21 \\ 21$      |    | 18       |    |    | $22 \\ 25$      |    | $\frac{16}{22}$ | $48 \\ 53$ |     |
| Condition coverage<br>Path coverage                                                               |                |                |          |      | 23<br>22        |    |     |                 |    |          |    |    |                 |    |                 |            |     |
| Multiple condition coverage<br>Condition determination coverage                                   |                |                |          |      | $\frac{13}{8}$  |    |     |                 |    |          |    |    |                 |    |                 |            |     |
| Loop coverage<br>Source code analysis<br>Code complexity analysis                                 |                |                |          |      | 8               |    |     |                 | 33 |          |    |    |                 |    |                 | 55<br>36   |     |
| Code complexity analysis                                                                          |                |                |          |      |                 |    |     |                 |    |          |    |    |                 |    |                 | 50         |     |

#### 4.5 Automation and tools

This section is split into multiple subsections, as the goal was not only to aggregate the findings on the popularity of automation and tools, but also any other aspects of automation and tools for which quantifiable data exists. There is a lot of data available on the subject of automation and tools, with three in every four of the reviewed studies visiting the subject in some way. This, along with the fact that no two independent studies seem to approach the subject in the same way in terms of framing, scoping, granularity or terminology makes it quite challenging to aggregate and categorize results. Being too strict about only grouping data which is perfectly compatible leads to a poor structure in presenting results, and does not allow for the benefits of analysing results in aggregate. Not being strict enough risks comparing totally incompatible data, apples to oranges so to speak, risking outright invalid analysis. An attempt has been made to find an appropriate balance in this regard, but it may be advisable to refer to the extracted data in appendix A or the primary studies themselves if the reader particularly interested in granular findings than the broad overview given here.

First, findings on the overall usage of automation and tools in testing, as well as the activities during which automation and/or tools are applied are presented in section 4.5.1. Then, the results on the usage of specific tools are discussed in section 4.5.2. Finally, the matter of how testing tools are acquired is discussed in section 4.5.3.

#### 4.5.1 Usage of automation and tools

Studies generally indicate that up two two-thirds of the industry automates testing, as shown in table 4.8, however, studies also consistently find that the actual number of test cases which are automated is less than 20%, as shown in table 4.9. In other words, it would appear that a large chunk of the industry uses no automation at all, and those who do, generally still mostly rely on manual testing.

#### 4.5. AUTOMATION AND TOOLS

**Table 4.8:** Percentage of respondents using tools or automation in general (second row) to fully or partially conduct various testing activities (e.g. unit testing, regression testing, static analysis or test planning).

| Study id                      | 1  | 2  | 3  | 6   | 7  | 9  | 13      | 14 | 15 | 16 | 17 | 18  | 19 | 20      | 21 | 22 | 23  | 26 | 27 |
|-------------------------------|----|----|----|-----|----|----|---------|----|----|----|----|-----|----|---------|----|----|-----|----|----|
| Automation in general         |    |    |    |     |    |    | 67      |    |    |    |    | 67  | 62 | 70      | 57 |    |     |    | 40 |
|                               |    |    |    |     |    |    |         |    |    |    |    |     |    |         |    |    |     |    |    |
| Test levels                   |    |    |    |     |    |    |         |    |    |    |    |     |    |         |    |    |     |    |    |
| Unit                          | 32 |    | 65 | 26  |    | 34 | 43      |    |    |    |    | 57  |    | 44      |    |    | 38  | 12 |    |
| Integration                   | 11 |    | 27 | 34  |    |    |         |    |    |    |    | 46  |    |         |    |    |     | 28 |    |
| System                        | 22 |    | 45 | 47  |    |    |         |    |    |    |    | 27  |    |         |    |    |     |    |    |
| Acceptance                    |    |    |    | 25  |    |    |         |    |    |    |    |     |    |         |    |    |     |    |    |
| Test types                    |    |    |    |     |    |    |         |    |    |    |    |     |    |         |    |    |     |    |    |
| Regression                    | 26 |    | 45 |     |    |    |         |    |    |    |    |     |    |         |    |    |     | 1  |    |
| Functional/Regression         |    |    |    |     | 58 |    |         |    |    |    |    |     |    |         |    |    |     |    |    |
| Stress                        | 29 |    | 20 |     |    |    |         |    |    |    |    |     |    |         |    |    |     |    |    |
| Performance                   |    |    |    |     | 44 | 43 | 55      | 66 |    |    |    | 49  |    | 51      |    |    | 50  | 21 |    |
| Security                      |    |    |    |     |    |    |         |    |    |    |    | 24  |    |         |    |    |     | 1  |    |
| Static/dynamic analysis       |    |    |    |     |    |    |         |    |    |    |    |     |    |         |    |    |     |    |    |
| Static analysis               |    |    |    |     |    | 16 | 26      |    |    |    | 37 |     |    | 28      | 18 |    | 24  |    |    |
| Dynamic analysis              |    |    |    |     |    |    | 16      |    |    |    |    |     |    | 17      | 16 |    | 11  |    |    |
| Other activities              |    |    |    |     |    |    |         |    |    |    |    |     |    |         |    |    |     |    |    |
|                               |    |    |    |     |    |    | -       |    |    |    |    |     |    |         |    |    | 4.0 |    |    |
| Test execution                |    | 54 |    |     |    | 36 | 70      |    | 80 | 34 |    |     |    | 70      |    | 71 | 49  |    |    |
| Test analysis and reporting   |    | 42 |    | 0.0 |    |    |         |    |    |    |    |     |    |         |    |    |     |    |    |
| Test reporting                |    |    |    | 26  |    |    | <b></b> |    |    |    |    |     |    | <b></b> | -  |    | -   |    |    |
| Test management               |    |    |    |     | 10 | 33 | 65      |    |    |    |    | 10  |    | 65      | 70 |    | 58  |    |    |
| Test case management          |    | 96 |    |     | 40 |    |         |    |    |    |    | 46  |    |         |    |    |     |    |    |
| Test planning/management      |    | 20 |    | 19  |    |    |         |    |    |    |    |     |    |         |    |    |     |    |    |
| Test estimation               |    |    |    | 40  |    |    |         |    | 74 |    |    |     |    |         | 69 |    |     |    |    |
| Test design                   |    |    |    | 40  |    | 19 | 50      |    | 14 |    |    | 15  |    | 41      | 02 |    | 37  |    |    |
| Concepting test cases/scripts |    | 21 |    |     |    | 10 | 50      |    | 71 |    |    | 10  |    | 44      |    | 58 | 57  |    |    |
| Defect management             |    | 01 |    | 90  |    |    |         |    | 11 |    |    |     |    |         |    | 00 |     |    |    |
| Bug tracking                  |    |    |    | 76  | 64 |    | 81      |    | 90 |    | 84 | 72  |    | 81      | 52 | 82 | 59  |    |    |
| Requirements management       |    |    |    | .0  | 24 |    | 01      |    |    |    | 01 | . 2 |    | 01      | 52 | 52 | 50  |    |    |
| Requirements traceability     |    |    |    |     |    |    | 47      |    |    |    |    |     |    | 46      |    |    | 31  |    |    |
| Code profiling                |    |    |    |     |    | 16 |         |    |    |    |    |     |    | -       |    |    |     |    |    |

**Table 4.9:** A summary of findings pertaining to the usage of test automation of tools which were not applicable to table 4.8.

Unit testing is the most automated test level, with most respondents automating 70-85% of their unit tests. Most respondents automate 15-30% of integration and system tests. Least automated is acceptance testing <sup>5</sup>.

Testers are more likely to use tools than developers. Most (36.6%) testers use test tools in all projects, while developers typically use them in most (30.0%) projects or some (28.2%) projects. <sup>5</sup>

Respondents typically automate fewer than 20% of their test cases, on average  $^{8\ 13\ 20}$   $^{23}.$ 

Respondents 'Frequently' (mode and median) automated test generation, most commonly for finding crashes and undeclared exceptions (41%), exercising assertions in code (38%) or exercising parameterised unit tests (38%). <sup>5</sup>

Respondents 'Sometimes' (median) used automated tools for both code inspections and static code analysis. Respondents 'Seldom' (mode and median) used test automation <sup>12</sup>.

Over 50% of respondents do not use any automation when conducting GUI tests, and less than 10% use automation exclusively <sup>26</sup>.

The number of respondents using automation/tools when conducting any of the test levels is typically below 50%. With the exception of unit testing, results on the usage tools/automation per test-level is fairly scarce and inconsistent so not many other reliable observations can be made from the data. As for test types, only performance testing stands out as typically being automated by around 50% of respondents across many studies. Between static analysis and dynamic analysis, both activities which require tools, the former is more popular but neither is usually used by over one-third of respondents. Bug tracking stands out as being the activity for which tools are used the most, typically by around two-thirds of respondents or more. Also somewhat popular is the usage of tools/automation for test management and test execution. For other activities, the data is too scarce to make meaningful inferences.

#### 4.5.2 Usage of specific tools for testing activities

Results on the popularity of testing tools are scarce, and almost any statement made on the topic is only backed by an individual data point, or can be met with counter-evidence. Two studies conducted in Canada found the unit testing frameworks **JUnit** (for Java) and **NUnit** (for C#) to be the most popular testing tools, with more than half of respondents using one or the other <sup>3 8</sup>. The only additional data on these tools from these studies comes from a 2021 study in Cameroon, which found that of those who automate testing, only 13% of respondents used JUnit, which is particularly surprising considering that twothirds of the respondents used Java and 74% of respondents conduct unit testing <sup>27</sup>. This same study instead found **Selenium**, a test automation tool for web applications, to be the most popular tool, used by around 40% of the industry, a finding backed up by another recent study focusing on GUI testing <sup>26</sup>. This study found **IBM rational** testing tools to only be used by 1% of respondents, however, in two studies earlier studies it was used by a respectable chunk of respondents,  $20\%^{3}$ <sup>24</sup>. Other highly-scoring (used by 10% of respondents or more) testing tools for which only an individual data point is available are **Appium** (20.95%) <sup>26</sup>, FitNesse (17%) <sup>3</sup>, **Sonarqube** (15%) and **findbugs** (10%) <sup>27</sup>. The study on GUI testing queried respondents about the tools they used for reporting bugs. Kanban (not a specific tool) scored highest, followed by **Jira** and **Slack**.

The lack of data on the topic of specific tool usage may be a consequence of the difficulty of designing a question on the topic of specific test tools, as a lot of tools exist and some effort has to be put into enumerating a reasonable set of options. One of the reviewed studies avoided this issue by using an open-ended question, asking for specific names of testing tools, and then simply reporting the raw responses <sup>4</sup>. Quantifiable inferences about the popularity of tools drawn from this data would likely be inaccurate because respondents may have trouble remembering all the tools used or their names, or understanding the question, as illustrated by some of the responses:

- "Two tools named something with "coverage" and "perform" (cannot remember the company behind)"
- "change control, bug tracking, test case management, etc., etc."
- "Proprietary in most cases."

#### 4.5.3 How testing tools are acquired

The little data that is available on the subject of how testing tools are acquired suggest that both commercial and open-source tools are commonly used, and that developing custom tools is not uncommon, while out-sourcing the development of testing tools is. 2004 study in Australia found that the most common way of acquiring testing tools was to purchase existing commercial products (68%). Some developed their testing tools in-house (14%) and one respondent out-sourced the development of their testing tools (2%)<sup>2</sup>. The study makes no mention of how the remaining respondents (16%) acquired tools, although later studies would suggest that they were probably using open-source tools. A 2010 study in Alberta noted that both commercial and open-source tools are common; looking at the raw data for individual tools would suggest that open-source tools were more commonly used among respondents <sup>3</sup>. A 2020 study in Pakistan found that using open-source tools was slightly more common than using commercial tools (36% vs. 33%), and that one in four respondents developed tools for testing in-house <sup>24</sup>. Another study reported that 17% of respondents develop custom testing tools <sup>27</sup>.
# 5 Discussion

This chapter begins with an analysis of the results (section 5.1), followed by revisiting the research questions (section 5.2), then a discussion on research validity (section 5.3), and ends with some thoughts on future work (section 5.4).

# 5.1 Analysis

Encouragingly, many of the surveyed populations have widely adopted most of the test levels, however, the comparatively low adoption rates of certain test levels in certain regions, e.g., integration testing in Alberta <sup>3</sup>, system testing in New Zealand <sup>19</sup> and system testing and acceptance testing Cameroon <sup>27</sup> is puzzling. A quick investigation did not reveal any glaring methodological issues in the studies which could explain the outliers, except perhaps the low sample size (30) of the last study; and even in this case, there is not much evidence against the phenomenon being real, considering that all of the other results the popularity of system testing and acceptance testing come from outside the Afro-Eurasian mainland, so there is not much to compare the result to. A deeper investigation might reveal that the source of these outliers are some forms of bias in the studies, however, entertaining the possibility that the reported phenomenons are real, it is surprising how the impact of regional culture could be so great as to make one region reliant on one test level while overlooking another, and have the situation reversed in another region.

It stands to reason that the primary concern when developing software is that its functionality works as intended, so the result that functional testing is most popular likely does not come as a surprise to anyone. The popularity of regression testing speaks to that the industry mostly recognizes the high risk of defects being introduced when making changes to software. Then again, in many surveys, some one-third of respondents did not conduct regression testing. Either this means that the surveyed populations are creating a lot of software that is never updated ("shelfware"), or large portions of these industries are unnecessarily vulnerable to introducing defects when changing software. If the latter is the case, then there is room for improvements to be made in the general know-how of practitioners (i.e. by means of better education/training), and/or the resources allocated to testing (i.e. by means of shifting organizational attitudes) in many regions. The fact that around half or more of the industry performs performance testing and usability testing is an encouraging result, particularly considering that many of those who do not probably aren't exposed to performance or usability issues due to the nature of the software in the first place. It is somewhat interesting how the relative popularity of the previously discussed test types does not seem heavily dependent on the surveyed population while for security testing and some of the test levels it does.

It is not too surprising that experience-based techniques and black-box techniques are more popular than white-box techniques, because white-box techniques such as those based on code coverage are only available to developers, and using them requires adopting specialized tools. Experience-based techniques and black-box techniques can be conducted by people without programming experience and typically do not require using specialized tools, so the threshold for adopting them is low.

Considering the ease with which unit tests can be written using open-source libraries like JUnit in a modern development environment, it is somewhat surprising that many still rely on manual testing, even on the unit test level. Perhaps it is worth considering what the automation of a testing activity like unit testing really means. It is clear that in a theoretical project where unit tests are created automatically and executed automatically (e.g. using continuous integration), unit testing has been automated. It is also quite clear that in another theoretical project, where a custom-made utility that requires manual inputs and observation of outputs is used to test a software component, unit testing is performed manually. However, there is a whole lot of ground between the two extremes: what about a theoretical project where tools are used to generate test cases automatically, which are then implemented manually using a unit testing framework that automates the comparison of expected outputs and actual outputs, and the automatic execution of all unit tests can be triggered manually? It may even be conceivable that the threshold for responding affirmatively to a question about the automation of unit testing is increasing over time, e.g., due progress is made in tools for automatic unit test generation. This is all to say that questions on the topic of automation are often too vague to really know what the underlying practices look like. Perhaps replacing questions about automation with questions on the usage of specific tools would be more beneficial.

## 5.2 Research questions revisited

Broadly speaking, all test levels are broadly used (RQ1). More specifically, the popularity of the test levels depends on the surveyed population, with the exception of unit testing which is consistently used by over two-thirds of respondents. The other test levels tend to be as popular or even more popular than unit testing, however, in some regions one or two test levels are used by as little as one-quarter of respondents, and there isn't a clear pattern as to which of the latter three test level ends up being a low outlier. As for the relative popularity of the test levels, the answer depends on surveyed population, and no generalizable answer can be given. For instance, even though the mean result for unit testing is fourteen percent higher than that of integration testing and the median result is higher as well, more times than not, integration testing was the more popular test level of the two.

The most popular test types in decreasing order of popularity are functional testing, regression testing, performance testing and usability testing (RQ2). Less consistently popular is security testing.

Results on the popularity of test design techniques are less clear, however, it is apparent that black-box test design techniques and experience-based test design techniques are more popular than white-box test design techniques (RQ3). Exploratory testing, error guessing, use case testing and boundary value analysis are some of the most popular test design techniques. Other techniques may be quite popular as well, but if this is the case, the fact has been obscured by the lack of conceptual and terminological consistency across the primary studies.

Typically, around two-thirds of survey respondents use tools to automate testing activities, however, fewer than 20% of test cases are automated (RQ4). None of the test levels stands out in terms of the level of automation; automation tools are typically used less then 50% of the time for each test level. Tools are quite often used for performance testing, test execution and bug tracking. Specific test tools which stand out as popular are NUnit, JUnit, selenium and IBM rational, although not much data exists on the topic as one might hope. Both commercial and open-source tools are common, and usually a small percentage of respondents develop their own tools.

These are only some of the things that descriptive data from questionnaire surveys can tell us (RQ). As many important aspects of testing were not explored in this study, it cannot be said that the overarching research question was answered satisfactorily. Examples of such topics are testing metrics, testing standards, maturity models, testing training, static testing, test data, test environments, and organizational aspects of testing such as testing budget and the ratio of testers to developers.

# 5.3 Research validity

Assessing the quality of primary studies is a critical part of conducting a systematic literature review as it allows for studies of poor quality to be excluded via the exclusion criteria and it allows for quality to be taken into account when interpreting results [Kee+07]. No formal quality assessment was not conducted in this study, partially due to time constraints, but partially also because it was not deemed strictly necessary as the purpose of this study was not statistical analysis. The inferences made were made conservatively, only when there was plenty of supporting evidence and little or no counter-evidence. Even so, the validity of the inferences made in this study are to some degree threatened by a myriad of validity concerns of the primary studies themselves, such as poor sample sizes, sampling methods, and various bias-inducing pitfalls in questionnaire design. Setting a minimum threshold of 20 for the sample size in the exclusion criteria only somewhat mitigate this issue. A higher threshold was not used because high-quality studies with large sample sizes in this research area are few and far between.

It is advisable for a single researcher conducting a systematic literature review to reevaluate the application of inclusion/exclusion criteria on a sample of already evaluated primary studies to ensure the consistency of their decisions [Kee+07]. No such measures were taken, so any mistakes made during the application of inclusion/exclusion criteria, or other error-prone phases of conducting this research for that matter, may have gone overlooked.

There are other threats to the validity of this study that could not so easily have been mitigated, such as the indeterminate effect of respondent demographics on the outcomes of the reviewed studies. For instance, here is a quote from one of the reviewed studies:

The relatively high number of management respondents is important to consider when interpreting the results of the survey. An answer that indicates that the organization does not perform a certain testing level, for example, may mean either that the organization truly does not perform that testing level, or that is just not aware of the testing that goes on. The latter possibility is entirely reasonable, especially in cases of detailed testing such as unit testing  $^{1}$ .

The effect of demographic dimensions such as respondent position, years of experience, company size and industry sector can be speculated on to help understand outliers' data. However, their effects can not truly be accounted for without rigorous statistical analysis, something that is not possible for the vast majority of the reviewed studies. A particularly cumbersome issue is that survey participants can have various degrees of understanding of testing concepts and terminology. One study reported that 43.4% of respondents carry out usability testing, but noted respondents are likely confusing functional tests with usability tests and erroneously selecting the option, and that the actual percentage is much less <sup>7</sup>. In another survey, 50% of respondents claimed to be using tools to automate test generation, however, attaching an auxiliary open-ended question in a later version of the survey revealed that many respondents were confusing test generation tools with other testing concepts and even tools that are unrelated to testing <sup>10</sup>. These are only individual cases where researchers directly addressed the issue; the degree to which this has affected the outcomes of any of the reviewed studies is virtually unknowable. Some studies attempted to mitigate this issue with measures such as including definitions in the questionnaire, using a qualifying question to weed out respondents who lack a basic understanding of software testing <sup>10</sup>, or by referring respondents to ISTQB glossary for explanations of terms. Besides respondent demographics and understanding of testing concepts, there is also an indeterminate list of factors regarding how the reviewed studies were carried out which may have skewed results, such as the lengths of the questionnaires and whether incomplete answers were included or discarded.

The exact figures reported from survey studies on software testing practices should be taken with a grain of salt regardless of the methodological soundness of the measurement, as people who want to take surveys on software testing are more likely to be interested in software testing than those who don't, and can therefore reasonably be assumed to be more likely to have adopted good testing practices than a randomly selected member of a sample. The degree to which this has affected the outcomes of the reviewed studies, and consequently, the outcomes of this study, is not easily known. It is probably a reasonable assumption that this form of bias is unlikely to have affected the relative popularity of testing practices, however.

It is possible that data has been misinterpreted during extraction. Most commonly, a

reported percentage in the reviewed studies represents a fraction of all respondents. However, sometimes studies report figures which only applies to a subset of respondents. For instance, a study might report on the percentage of respondents who automate unit testing of those who conduct unit testing. Naturally, comparing figures of one type with figures of the other type is not valid. For studies with high-quality reporting, the issue could easily be identified and adjusted for when encountered. In other cases, it is possible for misinterpretations to have occurred. This issue may also have been mitigated by conducting a quality assessment where shortcomings in reporting were taken into account.

## 5.4 Future work

Although no formal quality assessment was conducted in this work, there is an apparent need for more high-quality survey studies using methodological rigour including proper sampling methods, well-designed questionnaires and high-quality reporting to strengthen this research area. More geographical coverage from primary studies is needed as well, as there are no wide-scale survey studies written in English focusing on the software testing practices of a number of major software economies such as Russia, China, and India. Future literature surveys on the subject could verify the need for high-quality studies in this research area by conducting a quality assessment. There is also still uncovered ground for similar secondary studies to cover topics such as testing metrics, test completion criteria, and organizational aspects of testing.

# 6 Conclusions

As the importance of software grows, so does the importance of the primary method of conducting quality assurance on software, software testing. This notion is supported by the fact that many survey studies which aim to characterize the testing practices of the software industry have been published up in recent years.

The aim of this thesis was to aggregate results from these types of survey studies by means of a literature survey, with a focus on the usage of test levels, test types, test design techniques and test automation/tools.

The findings are that test levels are generally used by over two-thirds of surveyed populations but with the exception of unit testing, results can greatly vary widely depending on the surveyed population. The most used test types in decreasing order are functional testing, regression testing, performance testing and usability testing, and less consistently security testing. Experience-based techniques such as exploratory testing and error guessing and black-box techniques such as use case testing and boundary value analysis are more popular than white-box techniques. A lot of scattered data exists on the topic of automation/tools, but the principal finding is that the usage of automation is quite common, however, typically only a small fraction of test cases is automated, so overall the industry relies heavily on manual testing.

# Bibliography

- [BB12] H. N. Boone Jr. and D. A. Boone. "Analyzing Likert data". In: Journal of Extension 50.2 (2012). Publisher: JOE.
- [BW21] M. Betka and S. Wagner. "Extreme mutation testing in practice: An industrial case study". In: Proceedings - 2021 IEEE/ACM International Conference on Automation of Software Test, AST 2021. IEEE, 2021, pp. 113–116.
- [CLR20] M. Cerioli, M. Leotta, and F. Ricca. "What 5 million job advertisements tell us about testing: A preliminary empirical investigation". In: Proceedings of the ACM Symposium on Applied Computing. ACM, 2020, pp. 1586–1594.
- [CSP10] A. Causevic, D. Sundmark, and S. Punnekkat. "An industrial survey on contemporary aspects of software testing". In: ICST 2010 - 3rd International Conference on Software Testing, Verification and Validation. IEEE, 2010, pp. 393–401.
- [DA16] M. Dave and R. Agrawal. Mutation testing and test data generation approaches: A review. Vol. 628 CCIS. Communications in Computer and Information Science. Springer, 2016, pp. 373–382.
- [DF14] E. Daka and G. Fraser. "A survey on unit testing practices and problems". In: Proceedings - International Symposium on Software Reliability Engineering, ISSRE. IEEE, 2014, pp. 201–211.
- [Dia+17] A. C. Dias-Neto, S. Matalonga, M. Solari, G. Robiolo, and G. H. Travassos.
  "Toward the characterization of software testing practices in South America: looking at Brazil and Uruguay". In: Software Quality Journal 25.4 (2017). Publisher: Springer, pp. 1145–1183.
- [DS78] R. A. DeMillo and F. G. Sayward. "Hints on test data selection: Help for the practicing programmer". In: *Computer* 11.4 (1978). Publisher: IEEE, pp. 34– 41.
- [FA17] M. Felderer and F. Auer. "Software quality assurance during implementation: Results of a survey in software houses from Germany, Austria and Switzerland". In: Lecture Notes in Business Information Processing 269 (2017). Publisher: Springer, pp. 87–102.

- [FPO18] F. C. Ferrari, A. V. Pizzoleto, and J. Offutt. "A systematic review of cost reduction techniques for mutation testing: Preliminary results". In: Proceedings
   2018 IEEE 11th International Conference on Software Testing, Verification and Validation Workshops, ICSTW 2018. IEEE, 2018, pp. 1–10.
- [FS19] R. Florea and V. Stray. "A Global View on the Hard Skills and Testing Tools in Software Testing". In: Proceedings - 2019 ACM/IEEE 14th International Conference on Global Software Engineering, ICGSE 2019. IEEE, 2019, pp. 143–151.
- [Fun14] B. Fung. How A dumb software glitch kept thousands from reaching 911. Oct. 2014. URL: https://www.washingtonpost.com/news/the-switch/wp/ 2014/10/20/how-a-dumb-software-glitch-kept-6600-calls-fromgetting-to-911/ (visited on 12/13/2021).
- [Gar+15a] V. Garousi, A. Coşkunçay, A. Betin-Can, and O. Demirörs. "A survey of software engineering practices in Turkey". In: *Journal of Systems and Software* 108 (2015). Publisher: Elsevier, pp. 148–177.
- [Gar+15b] V. Garousi, A. Coşkunçay, A. Betin-Can, and O. Demirörs. A survey of software engineering practices in Turkey (Technical report-Extended version). Tech. rep. 2015.
- [GGS17] A. S. Ghiduk, M. R. Girgis, and M. H. Shehata. "Higher order mutation testing: A Systematic Literature Review". In: *Computer Science Review* 25 (2017). Publisher: Elsevier, pp. 29–48.
- [GM16] V. Garousi and M. V. Mäntylä. "A systematic literature review of literature reviews in software testing". In: Information and Software Technology 80 (2016). Publisher: Elsevier, pp. 195–216.
- [GSM04] A. Geras, M. Smith, and J. Miller. "A survey of software testing practices in Alberta". In: Canadian Journal of Electrical and Computer Engineering 29.3 (2004). Publisher: IEE, pp. 183–191.
- [GV10] V. Garousi and T. Varma. "A replicated survey of software testing practices in the Canadian province of Alberta: What has changed from 2004 to 2009?" In: *Journal of Systems and Software* 83.11 (2010). Publisher: Elsevier, pp. 2251– 2262.

- [GZ13] V. Garousi and J. Zhi. "A survey of software testing practices in Canada". In: Journal of Systems and Software 86.5 (2013). Publisher: Elsevier, pp. 1354– 1376.
- [Hab+11] P. Haberl, A. Spillner, K. Vosseberg, and M. Winter. Software Test in Practice. 2011. URL: https://www.istqb.org/documents/Survey\_GTB.pdf (visited on 12/30/2021).
- [Heu12] M. Heusser. Software testing lessons learned from Knight Capital Fiasco. Aug. 2012. URL: https://www.cio.com/article/2393212/softwaretesting-lessons-learned-from-knight-capital-fiasco.html (visited on 12/13/2021).
- [Hyn+18] T. Hynninen, J. Kasurinen, A. Knutas, and O. Taipale. "Software testing: Survey of the industry practices". In: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2018 - Proceedings. IEEE, 2018, pp. 1449–1454.
- [Int15] International Software Testing Qualifications Board. Certified Model-Based Tester Syllabus - Version 2015. 2015. URL: https://www.istqb.org/ downloads/send/6-model-based-tester-extension-documents/46istqb-ctfl-mbt-syllabus.html (visited on 12/30/2021).
- [Int18] International Software Testing Qualifications Board. Certified Tester Foundation Level Syllabus Version 2018 V3.1. 2018. URL: https://www.istqb. org/downloads/send/2-foundation-level-documents/281-istqb-ctflsyllabus-2018-v3-1.html (visited on 12/30/2021).
- [ISO13] ISO/IEC/IEEE 29119-1:2013. Software and systems engineering Software testing — Part 1: Concepts and definitions. International Standard. International Organization for Standardization, Sept. 2013.
- [ISO15] ISO/IEC TR 19759:2015. Software Engineering Guide to the software engineering body of knowledge (SWEBOK). International Standard. International Organization for Standardization, Oct. 2015.
- [IST16] ISTQB. ISTQB® Worldwide Software Testing Practices Survey 2015-16. 2016. URL: https://www.istqb.org/documents/ISTQB%5C%5FWorldwide%5C% 5FSoftware%5C%5FTesting%5C%5FPractices%5C%5FReport.pdf (visited on 11/25/2021).

- [IST18] ISTQB. ISTQB® Worldwide Software Testing Practices Survey 2017-18. 2018.
  URL: https://www.istqb.org/documents/ISTQB%202017-18%5C%
  5FRevised.pdf (visited on 11/25/2021).
- [IST21a] ISTQB. ISTQB Glossary. 2021. URL: https://glossary.istqb.org/en/ search/mutation%20testing (visited on 10/10/2021).
- [IST21b] ISTQB. ISTQB Surveys. 2021. URL: https://www.istqb.org/references/ surveys.html (visited on 11/24/2021).
- [JH11] Y. Jia and M. Harman. "An analysis and survey of the development of mutation testing". In: *IEEE Transactions on Software Engineering* 37.5 (2011). Publisher: IEEE, pp. 649–678.
- [JSR17] N. Jatana, B. Suri, and S. Rani. "Systematic Literature Review on Search based mutation testing". In: *E-Informatica Software Engineering Journal* 11.1 (2017). Publisher: Biblioteka Nauki, pp. 59–76.
- [Jun+21] N. Junior, H. Costa, L. Karita, I. MacHado, and L. Soares. "Experiences and Practices in GUI Functional Testing: A Software Practitioners' View". In: ACM International Conference Proceeding Series. ACM, 2021, pp. 195–204.
- [Kas+21] M. Kassab, P. Laplante, J. Defranco, V. V. G. Neto, and G. Destefanis.
  "Exploring the Profiles of Software Testing Jobs in the United States". In: *IEEE Access* 9 (2021). Publisher: IEEE, pp. 68905–68916.
- [KDL17] M. Kassab, J. F. Defranco, and P. A. Laplante. "Software Testing: The State of the Practice". In: *IEEE Software* 34.5 (2017). Publisher: IEEE, pp. 46–52.
- [Kee+07] S. Keele et al. Guidelines for performing systematic literature reviews in software engineering. Tech. rep. Citeseer, 2007.
- [LKL12] J. Lee, S. Kang, and D. Lee. "Survey on software testing practices". In: IET Software 6.3 (2012). Publisher: IET, pp. 275–282.
- [LR20] B. Latif and T. Rana. "A preliminary survey on software testing practices in Khyber PakhtunKhwa region of Pakistan". In: *Turkish Journal of Electrical Engineering and Computer Sciences* 28.1 (2020). Publisher: The Scientific and Technological Research Council of Turkey, pp. 575–589.
- [LSM20] J.-W. Lin, N. Salehnamadi, and S. Malek. "Test Automation in Open-Source Android Apps: A Large-Scale Empirical Study". In: Proceedings - 2020 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020. IEEE, 2020, pp. 1078–1089.

- [MI21] T. Maxime Carlos and M. Ibrahim. "Practices in software testing in Cameroon challenges and perspectives". In: *Electronic Journal of Information Systems* in Developing Countries 87.3 (2021). Publisher: Wiley Online Library, e12165.
- [Ng+04] S. Ng, T. Murnane, K. Reed, D. Grant, and T. Chen. "A preliminary survey on software testing practices in Australia". In: *Proceedings of the Australian* Software Engineering Conference, ASWEC. Vol. 2004. IEEE, 2004, pp. 116– 125.
- [Pap+19] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman. Mutation Testing Advances: An Analysis and Survey. Vol. 112. Advances in Computers. Elsevier, 2019, pp. 275–378.
- [Pet+21] G. Petrovic, M. Ivankovic, G. Fraser, and R. Just. "Practical Mutation Testing at Scale: A view from Google". In: *IEEE Transactions on Software Engineering* (2021). Publisher: IEEE.
- [Piz+19] A. V. Pizzoleto, F. C. Ferrari, J. Offutt, L. Fernandes, and M. Ribeiro. "A systematic literature review of techniques and metrics to reduce the cost of mutation testing". In: *Journal of Systems and Software* 157 (2019). Publisher: Elsevier.
- [PV19] J. A. D. Prado Lima and S. R. Vergilio. "A systematic mapping study on higher order mutation testing". In: Journal of Systems and Software 154 (2019). Publisher: Elsevier, pp. 92–109.
- [QHJ19] C. Quesada-López, E. Hernandez-Agüero, and M. Jenkins. "A survey of software testing practices in Costa Rica". In: XXII Ibero-American Conference on Software Engineering, CIbSE 2019 (2019). Publisher: Ibero-American Conference on Software Engineering, pp. 503–516.
- [SSL17] R. A. Silva, S. D. R. Senger de Souza, and P. S. Lopes de Souza. "A systematic review on search based mutation testing". In: *Information and Software Technology* 81 (2017). Publisher: Elsevier, pp. 19–35.
- [Tas02] G. Tassey. The Economic Impacts of Inadequate Infrastructure for Software Testing. Tech. rep. National Institute of Standards and Technology, May 2002.
- [TR13] M. Torchiano and F. Ricca. "Six reasons for rejecting an industrial survey paper". In: 2013 1st International Workshop on Conducting Empirical Studies in Industry, CESI 2013 - Proceedings. IEEE, 2013, pp. 21–26.

- [Tur12] Turkish Testing Board. Turkey Software Quality Report 2011-2012. 2012. URL: https://www.istqb.org/documents/Survey%5C%5FTTB%5C%5F2011. pdf (visited on 11/24/2021).
- [Tur13] Turkish Testing Board. Turkey Software Quality Report 2012-2013. 2013. URL: https://www.istqb.org/documents/Survey%5C%5FTTB.pdf (visited on 11/24/2021).
- [Tur14] Turkish Testing Board. Turkey Software Quality Report 2013-2014. 2014. URL: https://www.istqb.org/documents/Turkey%20Software%20Quality% 20Report%202013-2014.pdf (visited on 11/24/2021).
- [Tur16] Turkish Testing Board. Turkey Software Quality Report 2015-2016. 2016. URL: https://www.istqb.org/documents/Turkey%20Software%20Quality% 20Report%202015-2016.pdf (visited on 11/25/2021).
- [Tur18] Turkish Testing Board. Turkey Software Quality Report 2017-2018. 2018. URL: https://www.istqb.org/documents/Turkey%20Software%20Quality% 20Report%202017-2018.pdf (visited on 11/25/2021).
- [Tur19] Turkish Testing Board. Turkey Software Quality Report 2018-2019. 2019. URL: https://www.istqb.org/documents/Turkey%20Software%20Quality% 20Report%202018-2019.pdf (visited on 11/25/2021).
- [Vuk+20] V. Vukovic, J. Djurkovic, M. Sakal, and L. Rakovic. "An empirical investigation of software testing methods and techniques in the province of Vojvodina".
   In: *Tehnički vjesnik* 27.3 (2020). Publisher: Strojarski fakultet u Slavonskom Brodu, pp. 687–696.
- [WG18] D. Wang and M. Galster. "Development processes and practices in a small but growing software industry: A practitioner survey in New Zealand". In: International Symposium on Empirical Software Engineering and Measurement. ACM, 2018.
- [ZPZ18] Q. Zhu, A. Panichella, and A. Zaidman. "A systematic literature review of how mutation testing supports quality assurance processes". In: Software Testing Verification and Reliability 28.6 (2018). Publisher: Wiley Online Library.

### Appendix A Extracted data

This appendix only contains table A.1, which presents the all of the data extracted from the surveyed studies.

**Table A.1:** The data which was extracted from the studies. Values displayed in *italics* are estimates based on plotted data without explicit labeling of data points. Numerical values under findings are percentages, specifically, a percentage of respondents unless otherwise specified.

| Study metadata                                     |                               |
|----------------------------------------------------|-------------------------------|
| Assigned identifier                                | 1                             |
| Title                                              | "A survey of software         |
|                                                    | testing practices in Alberta" |
| Year                                               | 2004                          |
| $\operatorname{Author}(s)$                         | Geras, Smith, and Miller      |
| Reference                                          | [GSM04]                       |
| Survey metadata                                    |                               |
| Year(s) conducted                                  | 2002                          |
| Responses analyzed                                 | Almost 60                     |
| Target population                                  | Software organizations        |
| Region/scope                                       | Alberta, Canada               |
| Findings                                           |                               |
| Test level usage (management/non-management) (RQ1) |                               |
| • Unit                                             | 73/92                         |
| • System                                           | 90/92                         |
| • Accept                                           | 70/80                         |
| Test type usage (management/non-management) (RQ2)  |                               |
| • Alpha                                            | 40/40                         |
| • Regression                                       | 66/72                         |
| • Security                                         | 37/44                         |
| • Stress                                           | 63/60                         |
| • Usability                                        | 53/24                         |
| Test design technique usage (RQ3)                  |                               |
| • Tester skill                                     | 91                            |
| • Customer requirements                            | 72                            |
| • Out of Range                                     | 52                            |
| • Risks                                            | 43                            |
| • Boundary Values                                  | 28                            |
| • States                                           | 17                            |
| • Decision Tables                                  | 10                            |
| • Equivalence                                      | 5                             |

| • Flow Graphs                         | 5  |
|---------------------------------------|----|
| • Cause Effect Graphs                 | 3  |
| Defect tracking tool usage (RQ4)      | 68 |
| Automation of test levels/types (RQ4) |    |
| • Unit                                | 32 |
| • Integration                         | 11 |
| • System                              | 22 |
| • Regression                          | 26 |
| • Stress                              | 29 |

| Study metadata                                          |                               |
|---------------------------------------------------------|-------------------------------|
| Assigned identifier                                     | 2                             |
| Title                                                   | "A preliminary survey on      |
|                                                         | software testing practices in |
|                                                         | Australia"                    |
| Year                                                    | 2004                          |
| Author(s)                                               | Ng et al.                     |
| Reference                                               | [Ng+04]                       |
| Survey metadata                                         |                               |
| Year(s) conducted                                       | 2002-2003                     |
| Responses analyzed                                      | 65                            |
| Target population                                       | Software organizations        |
| Region/scope                                            | Australia                     |
| Findings                                                |                               |
| Test type usage (RQ2)                                   |                               |
| • UAT                                                   | 47.7                          |
| • Regression testing                                    | 69.2                          |
| Test design technique usage (RQ3)                       |                               |
| • Black-box                                             | 44.6                          |
| • White-box                                             | 24.6                          |
| • Data-flow analysis                                    | 27.7                          |
| • Mutation analysis                                     | 4.6                           |
| • Symbolic analysis                                     | 0                             |
| Some testing activities are automated using tools (RQ4) | 67.7                          |
| How those who use testing tools acquire them $(RQ4)$    |                               |
| • Commercially                                          | 68.2                          |
| • Develop tools in-house                                | 13.6                          |
| • Out-sourcing tool development                         | 2.3                           |
| Tool usage (RQ4)                                        |                               |
| • Test execution                                        | 53.8                          |
| • Regression testing                                    | 50.1                          |
| • Test analysis and reporting                           | 41.5                          |
| • Generating test cases/scripts                         | 30.8                          |
| • Test planning/management                              | 26.2                          |

| Study metadata                         |                               |
|----------------------------------------|-------------------------------|
| Assigned identifier<br>Title           | 3<br>"A replicated survey of  |
|                                        | software testing practices in |
|                                        | the Canadian province of      |
|                                        | Alberta: What has changed     |
|                                        | from 2004 to 2009?"           |
| Year                                   | 2010                          |
| Author(s)                              | Garousi and Varma             |
| Reference                              | [GV10]                        |
| Survey metadata                        |                               |
| Year(s) conducted                      | 2009                          |
| Responses analyzed                     | 53                            |
| Target population                      | Software organizations        |
| Region/scope                           | Alberta, Canada               |
| Findings                               |                               |
| Test level usage (RQ1)                 |                               |
| • Unit                                 | 96                            |
| • Integration                          | 37                            |
| • System                               | 97                            |
| • Accept                               | 88                            |
| Test type usage $(RQ2)$                |                               |
| • Alpha                                | 50                            |
| • Regression                           | 68                            |
| • Security                             | 13                            |
| • Stress                               | 57                            |
| • Usability                            | 47                            |
| Test design technique usage (RQ3)      |                               |
| • Tester skill                         | 91                            |
| • Customer requirements (user stories) | 78                            |
| • Out of Range                         | 47                            |
| • Risks                                | 20                            |
| Boundary Values                        | 45                            |
| • States                               | 22                            |
| Decision Tables                        | 8                             |
| Equivalence classes                    | 16                            |
| • Flow Graphs                          | 10                            |
| Cause Effect Graphs                    | 10                            |
| Automation of test levels/types (RQ4)  |                               |
| • UIII                                 | 00<br>07                      |
| Integration  Crusters                  | 27                            |
| • System                               | 45                            |

# Appendix A

| • Regression                 | 45 |
|------------------------------|----|
| • Stress                     | 20 |
| Tool usage (RQ4)             |    |
| • JUnit                      | 30 |
| • IBM Rational test products | 21 |
| • NUnit                      | 21 |
| • FitNesse                   | 17 |
| • Watin                      | 4  |
| • Parasoft test products     | 0  |
| • Microsoft test products    | 0  |
| • Watir                      | 0  |
|                              |    |

| Assigned identifier                             | 4                        |
|-------------------------------------------------|--------------------------|
| Title                                           | "An industrial survey on |
|                                                 | contemporary aspects of  |
|                                                 | software testing"        |
| Year                                            | 2010                     |
| Author(s)                                       | Causevic, Sundmark, and  |
|                                                 | Punnekkat                |
| Reference                                       | [CSP10]                  |
| Survey metadata                                 |                          |
| Year(s) conducted                               | 2009                     |
| Responses analyzed                              | 83                       |
| Target population                               | Software companies       |
| Region/scope                                    | Not explicit; possibly   |
|                                                 | Europe                   |
| Findings                                        |                          |
| Test level/type usage (0 - never, 7 always)     |                          |
| • Unit (RQ1)                                    | mode 5 and 7, median $5$ |
| • Performance (including load and stress) (RQ2) | mode 7, median 5         |
| • Functional black-box system (RQ1) (RQ2) (RQ3) | mode 4, median $6$       |
| Notes                                           |                          |

 $Results \ broken \ down \ by \ domain \ not \ extracted \ due \ to \ small \ sample$ 

vi

Study metadata

#### Study metadata

| Assigned identifier | 5                          |
|---------------------|----------------------------|
| Title               | Software Test in Practice  |
| Year                | 2011                       |
| Author(s)           | Haberl et al.              |
| Reference           | [Hab+11]                   |
| Survey metadata     |                            |
| Year(s) conducted   | 2011                       |
| Responses analyzed  | 1623                       |
| Target population   | Software professionals     |
| Region/scope        | Germany $(77\%)$ ,         |
|                     | Switzerland (13%), Austria |
|                     | (10%)                      |

#### Findings

Test type usage (RQ2)

| • Regression test                                      | 80.1 |
|--------------------------------------------------------|------|
| • Smoke test                                           | 59.5 |
| • Load/performance test                                | 50   |
| • Migration test                                       | 26   |
| • Security/penetration test                            | 26   |
| Usage of black-box test design techniques (RQ3)        |      |
| • Functionality testing or function coverage           | 82.2 |
| • Use case testing                                     | 77.1 |
| • Boundary value analysis                              | 67.6 |
| • Equivalence partitioning                             | 60.9 |
| • Random testing                                       | 38.9 |
| • State transition testing                             | 38.3 |
| • Decision table testing                               | 33.1 |
| • Pairwise testing                                     | 15.2 |
| • Classification tree method                           | 12.7 |
| • Other black-box techniques                           | 13.7 |
| • No black-box techniques                              | 3.5  |
| Usage of white-box test design techniques (RQ3)        |      |
| • Statement coverage                                   | 41.9 |
| • Decision/branch coverage                             | 35.8 |
| • Condition coverage                                   | 23.2 |
| • Path coverage                                        | 22.1 |
| • Multiple condition coverage                          | 13.2 |
| • Condition determination coverage                     | 13.2 |
| • Other white-box techniques                           | 13.7 |
| • No white-box techniques                              | 3.5  |
| Usage of experience-based test design techniques (RQ3) |      |

| • Error guessing                                           | 84.6          |
|------------------------------------------------------------|---------------|
| • Exploratory testing without test objectives              | 66.1          |
| • Exploratory testing with test objectives                 | 33.3          |
| • Fault attack with defect checklists                      | 21.5          |
| • Other experience-based test techniques                   | 15.2          |
| • No experience-based test techniques                      | 5.5           |
| Comparison of expected/actual result is automated (RQ4)    | 22            |
| Automation level of test types/levels (mode, median) (RQ4) |               |
| • Unit                                                     | 70/85,  70/85 |
| • Integration                                              | 15/30,  15/30 |
| • System                                                   | 15/30,  15/30 |
| • Acceptance                                               | $0\ 15/30$    |
| Test tools are used in projects (mode median) (RQ4)        |               |
| • Developers                                               | 3/3, 2/3      |
| • Testers                                                  | 2/3, 2/3      |

| Study metadata                    |                             |
|-----------------------------------|-----------------------------|
| Assigned identifier               | - 6                         |
| Title                             | "Survey on software testing |
|                                   | practices"                  |
| Year                              | 2012                        |
| Author(s)                         | J. Lee, Kang, and D. Lee    |
| Reference                         | [LKL12]                     |
| Survey metadata                   |                             |
| Year(s) conducted                 | Unknown                     |
| Responses analyzed                | 24                          |
| Target population                 | Software professionals      |
| Region/scope                      | Mostly USA                  |
| Findings                          |                             |
| Tools are used for activity (RQ4) | -                           |
| • Test estimation                 | 43                          |
| • Test planning                   | 48                          |
| • Unit testing                    | 26                          |
| • Integration testing             | 34                          |
| • System testing                  | 47                          |
| • Acceptance testing              | 25                          |
| • Defect management               | 90                          |
| • Defect tracking                 | 76                          |
| • Test reporting                  | 76                          |

| Study metadata                                                       |                          |
|----------------------------------------------------------------------|--------------------------|
| Assigned identifier                                                  | 7                        |
| Title                                                                | Turkey Software Quality  |
|                                                                      | Report 2011-2012         |
| Year                                                                 | 2012                     |
| Author(s)                                                            | Turkish Testing Board    |
| Reference                                                            | [Tur12]                  |
| Survey metadata                                                      |                          |
| Year(s) conducted                                                    | 2011-2012                |
| Responses analyzed                                                   | Unknown                  |
| Target population                                                    | Software professionals   |
| Region/scope                                                         | Turkey                   |
| Findings                                                             |                          |
| Usage of test types (RQ2)                                            |                          |
| • Functional                                                         | 98.1                     |
| • Performance                                                        | 83.0                     |
| • Usability                                                          | 43.4                     |
| Test design approach (RQ3)                                           |                          |
| • Creating and running test cases                                    | 20.8                     |
| • Ad hoc testing                                                     | 50.3                     |
| • Both                                                               | 28.9                     |
| Utilization level of used test automation tools (mode, median) (RQ4) | Less than 50%, Less than |
|                                                                      | 50%                      |
| Purpose of test automation (RQ4)                                     |                          |
| • Bug tracking                                                       | 64                       |
| • Functional/Regression testing                                      | 58                       |
| • Performance testing                                                | 44                       |
| • Test case management                                               | 40                       |
| • Requirements management                                            | 24                       |

х

| Study metadata                                        |                              |
|-------------------------------------------------------|------------------------------|
| Assigned identifier                                   | 8                            |
| Title                                                 | "A survey of software        |
|                                                       | testing practices in Canada" |
| Year                                                  | 2013                         |
| Author(s)                                             | Garousi and Zhi              |
| Reference                                             | [GZ13]                       |
| Survey metadata                                       |                              |
| Year(s) conducted                                     | 2010                         |
| Responses analyzed                                    | 246                          |
| Target population                                     | Software practitioners       |
| Region/scope                                          | Canada                       |
| Findings                                              |                              |
| Usage of test levels (RQ1)                            |                              |
| • Unit                                                | 80                           |
| • Functional/system (RQ2)                             | 78                           |
| Usage of test types $(RQ2)$                           |                              |
| • Performance                                         | 56                           |
| • GUI                                                 | 61                           |
| • UAT                                                 | 56                           |
| Usage of test case generation techniques (RQ3)        |                              |
| • Other                                               | 12                           |
| • No explicit test case generation technique          | 38                           |
| • Exploratory testing                                 | 5                            |
| • Code coverage (white-box testing)                   | 22                           |
| • Model-based techniques (e.g., based on UML)         | 15                           |
| • Boundary Value Analysis                             | 28                           |
| • Category partitioning (i.e., equivalence classing)  | 24                           |
| • Mutation testing                                    | 29                           |
| Average ratio of automated to manual testing (RQ4)    | 20/80                        |
| Usage of tools and frameworks (RQ4)                   |                              |
| • Other tools and frameworks                          | 28                           |
| • Web application testing tools                       | 35                           |
| • Family of commercial functional web tools (non-web) | 41                           |
| • XUnit frameworks (e.g., JUnit, NUnit)               | 63                           |
| Notes                                                 |                              |

Figure 15 differs from body text on functional/system testing. Extracted data from body text.

42.9

| Study metadata                  |                         |
|---------------------------------|-------------------------|
| Assigned identifier             | 9                       |
| Title                           | Turkey Software Quality |
|                                 | Report 2012-2013        |
| Year                            | 2013                    |
| Author(s)                       | Turkish Testing Board   |
| Reference                       | [Tur13]                 |
| Survey metadata                 |                         |
| Year(s) conducted               | 2012-2013               |
| Responses analyzed              | Unknown                 |
| Target population               | Software professionals  |
| Region/scope                    | Turkey                  |
| Findings                        |                         |
| Test process is automated (RQ4) |                         |
| • Test management               | 32.5                    |
| • Test execution                | 36.4                    |
| • Test design                   | 13.0                    |
| • Unit testing                  | 33.8                    |
| • Static analysis               | 15.6                    |
| • Code profiling                | 15.6                    |

- Code profiling
- Performance testing and simulation

| Study metadata                                          |                           |
|---------------------------------------------------------|---------------------------|
| Assigned identifier                                     | 10                        |
| Title                                                   | "A survey on unit testing |
|                                                         | practices and problems"   |
| Year                                                    | 2014                      |
| Author(s)                                               | Daka and Fraser           |
| Reference                                               | $[\mathrm{DF}14]$         |
| Survey metadata                                         |                           |
| Year(s) conducted                                       | 2013                      |
| Responses analyzed                                      | 171                       |
| Target population                                       | Software developers       |
| Region/scope                                            | Worldwide, mostly USA     |
| Findings                                                |                           |
| Usage of mutation analysis (mode, median) (RQ3)         | Frequently, Frequently    |
| Usage of automated test generation (mode, median) (RQ4) | Frequently, Frequently    |
| What is automated unit test generation used for $(RQ4)$ |                           |
| • Exercising specifications (e.g., JML, code contracts) | 33                        |
| • Exercising assertions in code                         | 38                        |
| • Exercising parameterised unit tests                   | 38                        |
| • Finding crashes and undeclared exceptions             | 41                        |
| • To complement manually written tests                  | 8                         |
| • Other                                                 | 8                         |

| U U                            |                         |
|--------------------------------|-------------------------|
| Assigned identifier            | 11                      |
| Title                          | Turkey Software Quality |
|                                | Report 2013-2014        |
| Year                           | 2014                    |
| Author(s)                      | Turkish Testing Board   |
| Reference                      | [Tur 14]                |
| Survey metadata                |                         |
| Year(s) conducted              | 2013-2014               |
| Responses analyzed             | Unknown                 |
| Target population              | Software professionals  |
| Region/scope                   | Turkey                  |
| Findings                       |                         |
| Usage of test techniques (RQ3) |                         |
| • Use case testing             | 76.2                    |
| • Checklist based              | 60.3                    |
| • Error guessing               | 54.0                    |
| • Exploratory testing          | 49.2                    |
| • Boundary value analysis      | 41.3                    |
| • Decision table               | 31.7                    |
| • State transition             | 23.8                    |
| • Attacks                      | 22.2                    |
| • Statement coverage           | 20.6                    |
| • Decision coverage            | 20.6                    |
| • Equivalence partitioning     | 15.9                    |
| • Classification tree          | 11.1                    |
| • Pair-wise testing            | 9.5                     |
|                                |                         |

Study metadata

| Study metadata                                             |                          |
|------------------------------------------------------------|--------------------------|
| Assigned identifier                                        | 12                       |
| Title                                                      | "A survey of software    |
|                                                            | engineering practices in |
|                                                            | Turkey"                  |
| Year                                                       | 2015                     |
| $\operatorname{Author}(s)$                                 | Garousi et al.           |
| Reference                                                  | [Gar+15a]                |
| Survey metadata                                            |                          |
| Year(s) conducted                                          | 2013                     |
| Responses analyzed                                         | 202                      |
| Target population                                          | Software practitioners   |
| Region/scope                                               | Turkey                   |
| Findings                                                   | -                        |
| Test level usage (mode, median) (RQ1)                      |                          |
| • Unit                                                     | Frequently, Sometimes    |
| • Integration                                              | Always, Frequently       |
| • Functional/system                                        | Always, Frequently       |
| Test type usage (mode, median) $(RQ2)$                     |                          |
| • UAT                                                      | Always, Frequently       |
| • Performance testing                                      | Sometimes, Sometimes     |
| • Load/stress testing                                      | Seldom, Sometimes        |
| • Security testing                                         | Sometimes, Sometimes     |
| Usage of test design techniques $(RQ3)$                    |                          |
| • No explicit test-case generation technique               | 49                       |
| • Source code analysis                                     | 33                       |
| • Model-based techniques                                   | 22                       |
| • Boundary value analysis                                  | 24                       |
| • Category partitioning                                    | 24                       |
| Automated tool usage for activities (mode, median) $(RQ4)$ |                          |
| • Code inspections                                         | Frequently, Sometimes    |
| • Static code analysis                                     | Frequently, Sometimes    |
| Usage of test automation (mode, median) $(RQ4)$            | Seldom, Seldom           |

| Study metadata                           |                            |
|------------------------------------------|----------------------------|
| Assigned identifier                      | 13                         |
| Title                                    | ISTQB® Worldwide           |
|                                          | Software Testing Practices |
|                                          | Survey 2015-16             |
| Year                                     | 2016                       |
| Author(s)                                | ISTQB                      |
| Reference                                | [IST16]                    |
| Survey metadata                          |                            |
| Year(s) conducted                        | 2015                       |
| Responses analyzed                       | 3200                       |
| Target population                        | Software professionals     |
| Region/scope                             | Worldwide                  |
| Findings                                 |                            |
| Usage of non-functional test types (RQ2) |                            |
| • Performance                            | 63                         |
| • Usability                              | 56.1                       |
| • Security                               | 38.5                       |
| • Reliability                            | 30.7                       |
| • Accessibility                          | 29.1                       |
| • Testability                            | 27.7                       |
| • Efficiency                             | 25.9                       |
| • Availability                           | 25.6                       |
| • Maintainability                        | 18.9                       |
| • Interoperability                       | 18.5                       |
| • Operability                            | 17.5                       |
| • Scalability                            | 15                         |
| • Recoverability                         | 12.9                       |
| • Portability                            | 10.6                       |
| • Supportability                         | 8.4                        |
| • Extensibility                          | 5.2                        |
| Usage of test techniques $(RQ3)$         |                            |
| • Use case testing                       | 70.8                       |
| • Exploratory testing                    | 66.3                       |
| • Checklist based                        | 54.1                       |
| • Boundary value analysis                | 48.2                       |
| • Error guessing                         | 37                         |
| • Equivalence partition                  | 34                         |
| • Decision tables                        | 21.5                       |
| • State transition                       | 21.4                       |
| • Statement coverage                     | 18.2                       |
| • Pair-Wise testing                      | 13.2                       |

xvi

# Appendix A

| • Attacks                                               | 10.4                         |
|---------------------------------------------------------|------------------------------|
| • Classification tree                                   | 7.1                          |
| • Other                                                 | 2.2                          |
| Usage of tools (RQ4)                                    |                              |
| • Defect tracking                                       | 81.2                         |
| • Test execution                                        | 70.0                         |
| • Test automation                                       | 67.3                         |
| • Test management                                       | 65.4                         |
| • Performance testing                                   | 55.2                         |
| • Test design                                           | 49.7                         |
| • Requirements traceability                             | 47.4                         |
| • Unit testing                                          | 42.9                         |
| • Static analysis                                       | 26.4                         |
| • Dynamic analysis                                      | 16.0                         |
| • Other                                                 | 1.6                          |
| Percentage of test cases automated (mode, median) (RQ4) | Less than $20\%$ , Less then |
|                                                         | 20%                          |

xvii

16.9

| Study metadata                                   |                         |
|--------------------------------------------------|-------------------------|
| Assigned identifier                              | 14                      |
| Title                                            | Turkey Software Quality |
|                                                  | Report 2015-2016        |
| Year                                             | 2016                    |
| Author(s)                                        | Turkish Testing Board   |
| Reference                                        | [Tur 16]                |
| Survey metadata                                  |                         |
| Year(s) conducted                                | 2015-2016               |
| Responses analyzed                               | Unknown                 |
| Target population                                | Software professionals  |
| Region/scope                                     | Turkey                  |
| Findings                                         |                         |
| Usage of tools (RQ4)                             |                         |
| • Performance testing tools                      | 66.4                    |
| • Monitoring tools                               | 51.9                    |
| • Emulators / simulators                         | 34.9                    |
| • Virtual servers                                | 29.2                    |
| • Application performance management - APM tools | 18.6                    |
| • Service virtualization tools                   | 18.0                    |

Service virtualization toolsApplication profilers

#### Study metadata

| Assigned identifier                                           | 15                           |
|---------------------------------------------------------------|------------------------------|
| Title                                                         | "Toward the                  |
|                                                               | characterization of software |
|                                                               | testing practices in South   |
|                                                               | America: looking at Brazil   |
|                                                               | and Uruguay"                 |
| Year                                                          | 2017                         |
| Author(s)                                                     | Dias-Neto et al.             |
| Reference                                                     | [Dia+17]                     |
| Survey metadata                                               |                              |
| Year(s) conducted                                             | 2015                         |
| Responses analyzed                                            | 150                          |
| Target population                                             | Testing practitioners        |
| Region/scope                                                  | Southern/Brazil (37%),       |
|                                                               | Northern/Brazil $(33\%)$ ,   |
|                                                               | Uruguay $(30\%)$             |
| Findings                                                      |                              |
| Usage of test levels (NB, SB, UY) (RQ1)                       | _                            |
| • Unit                                                        | 71, 79, 78                   |
| • Integration                                                 | 79, 83, 86                   |
| • System                                                      | 88, 89, 88                   |
| • Acceptance                                                  | 83,82,85                     |
| Usage of test types (RQ2)                                     |                              |
| • Regression                                                  | 84, 83, 84                   |
| • Performance                                                 | 70,  68,  71                 |
| • Security                                                    | 70,  68,  74                 |
| Usage of exploratory testing (RQ3)                            | 85,77,82                     |
| Usage of tools for activities (RQ4)                           |                              |
| • Test database for reuse                                     | 81, 88, 91                   |
| • Automatic execution of test procedures or cases             | 78, 81, 81                   |
| • Automatic generation of test procedures or cases            | 69, 71, 73                   |
| • Track and record results                                    | 83, 84, 88                   |
| • Estimate test effort and/or schedule                        | 73, 75, 74                   |
| • Enact activities and artifacts                              | 78, 80, 76                   |
| • Recording defects and the effort to fix them (bug tracking) | 89, 89, 92                   |
| • Coverage measurement                                        | 71, 78, 68                   |
| • Continuous integration for automated tests                  | 75, 82, 70                   |

• Selection of test tools according to project characteristics 83, 78, 83

| Assigned identifier                                       | 16                     |
|-----------------------------------------------------------|------------------------|
| Title                                                     | "Software Testing: The |
|                                                           | State of the Practice" |
| Year                                                      | 2017                   |
| Author(s)                                                 | Kassab, Defranco, and  |
|                                                           | Laplante               |
| Reference                                                 | [KDL17]                |
| Survey metadata                                           |                        |
| Year(s) conducted                                         | 2015                   |
| Responses analyzed                                        | 167                    |
| Target population                                         | Software professionals |
| Region/scope                                              | Seemingly USA          |
| Findings                                                  |                        |
| Usage of test levels (RQ1)                                |                        |
| • Unit                                                    | 72                     |
| • Integration                                             | 67                     |
| • System                                                  | 81                     |
| • Acceptance                                              | 72                     |
| Usage of regression resting $(RQ2)$                       | 63                     |
| Usage of test types (for system tests) $(RQ2)$            |                        |
| • Regulatory                                              | 13                     |
| • Documentation                                           | 28                     |
| • Reliability                                             | 41                     |
| • Scalability                                             | 19                     |
| • Interoperability                                        | 21                     |
| • Load and stability                                      | 28                     |
| • Stress                                                  | 30                     |
| • Performance                                             | 63                     |
| • Functionality                                           | 91                     |
| Usage of test design techniques (RQ3)                     |                        |
| • Black-box                                               | 78                     |
| • White-box                                               | 42                     |
| Automatic comparison of actual and expected results (RQ4) | 34                     |

 $\mathbf{X}\mathbf{X}$ 

| Study metadata              |                             |
|-----------------------------|-----------------------------|
| Assigned identifier         | 17                          |
| Title                       | "Software quality assurance |
|                             | during implementation:      |
|                             | Results of a survey in      |
|                             | software houses from        |
|                             | Germany, Austria and        |
|                             | Switzerland"                |
| Year                        | 2017                        |
| Author(s)                   | Felderer and Auer           |
| Reference                   | [FA17]                      |
| Survey metadata             |                             |
| Year(s) conducted           | 2015                        |
| Responses analyzed          | 57                          |
| Target population           | Software houses             |
| Region/scope                | Germany (33%), Austria      |
|                             | (33%) and Switzerland       |
|                             | (33%)                       |
| Findings                    |                             |
| Usage of unit testing (RQ1) | 68                          |
| Usage of tools (RQ4)        |                             |
| • Static code analysis      | 37                          |
| • Bug tracking              | 84                          |

| Assigned identifier                        | 18                           |
|--------------------------------------------|------------------------------|
| Title                                      | "Software testing: Survey of |
|                                            | the industry practices"      |
| Year                                       | 2018                         |
| Author(s)                                  | Hynninen et al.              |
| Reference                                  | [Hyn+18]                     |
| Survey metadata                            |                              |
| Year(s) conducted                          | 2017                         |
| Responses analyzed                         | 33                           |
| Target population                          | Software organizations       |
| Region/scope                               | Finland                      |
| Findings                                   |                              |
| Testing tool usage during activities (RQ4) |                              |
| • Bug/Defect reporting                     | 72.2                         |
| • Test automation                          | 66.7                         |
| • Unit testing                             | 57.6                         |
| • Bug/Code tracing                         | 57.6                         |
| • Performance testing                      | 48.5                         |
| • Test case management                     | 45.5                         |
| • Integration testing                      | 45.5                         |
| • Virtual test environment                 | 42.5                         |
| • Automated metrics collector              | 36.4                         |
| • System testing                           | 27.3                         |
| • Security testing                         | 24.2                         |
| • Test completeness                        | 24.2                         |
| • Test design                              | 15.2                         |
| • Protocol/Interface conformance tool      | 9.1                          |

Study metadata
| Study metadata             |                            |
|----------------------------|----------------------------|
| Assigned identifier        | 19                         |
| Title                      | "Development processes and |
|                            | practices in a small but   |
|                            | growing software industry: |
|                            | A practitioner survey in   |
|                            | New Zealand"               |
| Year                       | 2018                       |
| Author(s)                  | Wang and Galster           |
| Reference                  | [WG18]                     |
| Survey metadata            |                            |
| Year(s) conducted          | 2017-2018                  |
| Responses analyzed         | 101                        |
| Target population          | Software developers        |
| Region/scope               | New Zealand                |
| Findings                   |                            |
| Usage of test levels (RQ1) |                            |
| • Unit                     | 73                         |
| • Integration              | 48                         |
| • System                   | 26                         |
| • Acceptance               | 45                         |

Usage of UI testing (RQ2) Usage of automated testing (RQ4) 3562

| Study metadata                      |                            |
|-------------------------------------|----------------------------|
| Assigned identifier                 | 20                         |
| Title                               | ISTQB® Worldwide           |
|                                     | Software Testing Practices |
|                                     | Survey 2017-18             |
| Year                                | 2018                       |
| $\operatorname{Author}(s)$          | ISTQB                      |
| Reference                           | [IST18]                    |
| Survey metadata                     |                            |
| Year(s) conducted                   | 2017-2018                  |
| Responses analyzed                  | 2000                       |
| Target population                   | Software professionals     |
| Region/scope                        | Worldwide                  |
| Findings                            |                            |
| Test type usage (RQ2)               |                            |
| • Functional                        | 83.0                       |
| • Performance                       | 60.7                       |
| • Security                          | 44.6                       |
| • Usability                         | 44.1                       |
| • Accessibility                     | 28.2                       |
| • Reliability                       | 22.4                       |
| • Testability                       | 20.5                       |
| • Availability                      | 19.8                       |
| Maintainability                     | 19.3                       |
| • Efficiency                        | 18.8                       |
| • Scalability                       | 15.5                       |
| • Interoperability                  | 15.4                       |
| • Operability                       | 12.8                       |
| • Portability                       | 11.1                       |
| • Recoverability                    | 10.4                       |
| • Supportability                    | 6.7                        |
| • Extensibility                     | 4.2                        |
| • UAT                               | 66                         |
| Test design technique usage $(RQ3)$ |                            |
| • Use case testing                  | 73.0                       |
| • Exploratory testing               | 67.2                       |
| • Boundary value analysis           | 52.3                       |
| • Checklist based                   | 49.7                       |
| • Error guessing                    | 36.0                       |
| • Equivalence partitioning          | 36.0                       |
| • Decision tables                   | 28.9                       |
| • Decision coverage                 | 25.1                       |

## Appendix A

| • Statement coverage                                    | 21.6          |
|---------------------------------------------------------|---------------|
| • State transition                                      | 20.7          |
| • Pair-wise Testing                                     | 13.4          |
| • Attacks                                               | 9.3           |
| • Classification tree                                   | 6.4           |
| • Other                                                 | 2.1           |
| Tool usage $(RQ4)$                                      |               |
| • Defect tracking                                       | 80.6          |
| • Test automation                                       | 70.1          |
| • Test execution                                        | 69.7          |
| • Test management                                       | 65.2          |
| • Performance testing                                   | 51.2          |
| • Requirements traceability                             | 45.8          |
| • Test design                                           | 43.9          |
| • Unit testing                                          | 43.8          |
| • Static analysis                                       | 27.9          |
| • Dynamic analysis                                      | 17.2          |
| • Other                                                 | 2             |
| Percentage of test cases automated (mode, median) (RQ4) | 1-10%, 11-20% |
|                                                         |               |

XXV

| Study metadata                                         |                         |
|--------------------------------------------------------|-------------------------|
| Assigned identifier                                    | 21                      |
| Title                                                  | Turkey Software Quality |
|                                                        | Report 2017-2018        |
| Year                                                   | 2018                    |
| Author(s)                                              | Turkish Testing Board   |
| Reference                                              | [Tur18]                 |
| Survey metadata                                        |                         |
| Year(s) conducted                                      | 2017-2018               |
| Responses analyzed                                     | 300                     |
| Target population                                      | Software professionals  |
| Region/scope                                           | Turkey                  |
| Findings                                               |                         |
| Usage of test automation for test levels/types $(RQ4)$ |                         |
| • Regression                                           | 35                      |
| • UI                                                   | 25                      |
| • Integration                                          | 18                      |
| • Unit                                                 | 18                      |
| Tool usage $(RQ4)$                                     |                         |
| • Test management                                      | 70                      |
| • Test automation                                      | 57                      |
| • Defect tracking                                      | 52                      |
| • Test data management                                 | 24                      |
| • CI/DevOps tools                                      | 23                      |
| • Static analysis                                      | 18                      |
| • Dynamic analysis                                     | 16                      |
| • Test virtualization                                  | 9                       |
| • Other                                                | 1                       |

| Study metadata                                                 |                            |
|----------------------------------------------------------------|----------------------------|
| Assigned identifier                                            | 22                         |
| Title                                                          | "A survey of software      |
|                                                                | testing practices in Costa |
|                                                                | Rica"                      |
| Year                                                           | 2019                       |
| Author(s)                                                      | Quesada-López,             |
|                                                                | Hernandez-Agüero, and      |
|                                                                | Jenkins                    |
| Reference                                                      | [QHJ19]                    |
| Survey metadata                                                |                            |
| Year(s) conducted                                              | 2018                       |
| Responses analyzed                                             | 92                         |
| Target population                                              | Software professionals     |
| Region/scope                                                   | Costa Rica                 |
| Findings                                                       |                            |
| Usage of test levels (RQ1)                                     |                            |
| • Unit                                                         | 79                         |
| • Integration                                                  | 81                         |
| • System                                                       | 83                         |
| • Acceptance                                                   | 88                         |
| Usage of test types (RQ2)                                      |                            |
| • Performance                                                  | 71                         |
| • Security                                                     | 71                         |
| • Regression                                                   | 79                         |
| Usage of exploratory testing (RQ3)                             | 69                         |
| Usage of tools for activities (RQ4)                            |                            |
| • Test database for reuse                                      | 77                         |
| • Automatic execution of test procedures or cases              | 71                         |
| • Automatic generation of test procedures or cases             | 58                         |
| • Track and record results                                     | 74                         |
| • Estimate test effort and/or schedule                         | 62                         |
| • Enact activities and artifacts                               | 73                         |
| • Recording defects and the effort to fix them (bug tracking)  | 82                         |
| • Coverage measurement                                         | 61                         |
| • Continuous integration for automated tests                   | 66                         |
| • Selection of test tools according to project characteristics | 67                         |

| Study metadata             |                         |
|----------------------------|-------------------------|
| Assigned identifier        | 23                      |
| Title                      | Turkey Software Quality |
|                            | Report 2018-2019        |
| Year                       | 2019                    |
| $\operatorname{Author}(s)$ | Turkish Testing Board   |
| Reference                  | [Tur 19]                |
| Survey metadata            |                         |
| Year(s) conducted          | 2018-2019               |
| Responses analyzed         | Unknown                 |
| Target population          | Software professionals  |
| Region/scope               | Turkey                  |
| Findings                   |                         |
| Test type usage (RQ2)      |                         |
| • Functionality            | 92                      |
| • Performance              | 64                      |
| • Usability                | 62                      |
| • Accessibility            | 35                      |
| • Testability              | 34                      |
| • Security                 | 33                      |
| Availability               | 28                      |
| • Reliability              | 26                      |
| Maintainability            | 25                      |
| • Operability              | 13                      |
| Portability                | 13                      |
| • Interoperability         | 12                      |
| Recoverability             | 11                      |
| • Supportability           | 8                       |
| • Extensibility            | 8                       |
| • Scalability              | 8                       |
| Test technique usage (RQ3) |                         |
| • Use case testing         | 69                      |
| • User story testing       | 61                      |
| • Checklist based          | 61                      |
| • Error guessing           | 45                      |
| • Exploratory testing      | 42                      |
| • Boundary value analysis  | 38                      |
| • Decision table           | 20                      |
| • Equivalence partitioning | 25                      |
| Decision coverage          | 22                      |
| State transition           | 19                      |
| • Statement coverage       | 16                      |

## Appendix A

| • Classification tree                          | 15            |
|------------------------------------------------|---------------|
| • Attacks                                      | 13            |
| • Pair-wise testing                            | 9             |
| • Other                                        | 1             |
| Tool usage for activities (RQ4)                |               |
| • Defect tracking                              | 59            |
| • Test management                              | 58            |
| • Performance testing                          | 50            |
| • Test execution                               | 49            |
| • Unit testing                                 | 38            |
| • Test design                                  | 37            |
| • Requirements traceability                    | 31            |
| • Static analysis                              | 24            |
| • Dynamic analysis                             | 11            |
| • Other                                        | 2             |
| Degree of test automation (mode, median) (RQ4) | 1-10%, 11-20% |
|                                                |               |

| Assigned identifier                   | 24                            |
|---------------------------------------|-------------------------------|
| Title                                 | "A preliminary survey on      |
|                                       | software testing practices in |
|                                       | Khyber PakhtunKhwa            |
|                                       | region of Pakistan"           |
| Year                                  | 2020                          |
| Author(s)                             | Latif and Rana                |
| Reference                             | [LR20]                        |
| Survey metadata                       |                               |
| Year(s) conducted                     | 2018                          |
| Responses analyzed                    | 70                            |
| Target population                     | Software organizations        |
| Region/scope                          | Khyber PakhtunKhwa,           |
|                                       | Pakawistan                    |
| Findings                              |                               |
| Most used box approach (RQ3)          |                               |
| • White-box                           | 57.1                          |
| • Black-box                           | 32.9                          |
| • Grey-box                            | 11.4                          |
| Most used test design technique (RQ3) |                               |
| • Tester skills                       | 58.6                          |
| • Boundary value analysis             | 8.6                           |
| • Equivalence partitioning            | 11.4                          |
| • Control flow graph                  | 21.4                          |

Notes

The questionnaire in this survey is designed differently than the other ones in that for example, rather than asking respondents which test design techniques they used, respondents were asked to select their most used test design technique (single choice). Using this approach requires that the options are mutually exclusive and comprehensive; data about test levels and test tools were not extracted due to problems in this regard.

Study metadata

 $\mathbf{X}\mathbf{X}\mathbf{X}$ 

| Study metadata                        |                             |
|---------------------------------------|-----------------------------|
| Assigned identifier                   | 25                          |
| Title                                 | "An empirical investigation |
|                                       | of software testing methods |
|                                       | and techniques in the       |
|                                       | province of Vojvodina"      |
| Year                                  | 2020                        |
| $\operatorname{Author}(s)$            | Vukovic et al.              |
| Reference                             | [Vuk+20]                    |
| Survey metadata                       |                             |
| Year(s) conducted                     | Unknown                     |
| Responses analyzed                    | 83                          |
| Target population                     | Software professionals      |
| Region/scope                          | Vojvodina, Serbia           |
| Findings                              |                             |
| Usage of test design techniques (RQ3) |                             |
| • Black-box                           | 92.2                        |
| • White-box                           | 78.4                        |
| • Equivalence class partitioning      | 21.7                        |
| • Boundary value analysis             | 60.2                        |
| • Combinatorial test techniques       | 49.4                        |
| • Cause-Effect graphing               | 24.1                        |
| • Statement coverage                  | 48.2                        |
| • Branch Coverage                     | 53.0                        |
| Condition Coverage                    | 61.4                        |
| • Loop Coverage                       | 55.4                        |
| Control Flow Graphs                   | 44.6                        |
| Code Complexity Analysis              | 36.1                        |
| • Exploratory testing (mode, median)  | Medium agreement,           |
|                                       | Medium agreement            |

| Assigned identifier                           | 26                         |
|-----------------------------------------------|----------------------------|
| Title                                         | "Experiences and Practices |
|                                               | in GUI Functional Testing  |
|                                               | A Software Practitioners   |
|                                               | View'                      |
| Year                                          | 2021                       |
| Author(s)                                     | Junior et al.              |
| Reference                                     | [Jun+21]                   |
| Survey metadata                               |                            |
| Year(s) conducted                             | 2021                       |
| Responses analyzed                            | 222                        |
| Target population                             | Testing professionals      |
| Region/scope                                  | Brazi                      |
| Findings                                      |                            |
| Tools/frameworks used for $GUI$ testing (RQ4) |                            |
| • Selenium                                    | 35.97                      |
| • Appium                                      | 20.95                      |
| • Cypress                                     | 9.49                       |
| • Others                                      | 7.51                       |
| • TestComplete                                | 5.14                       |
| • Sikuli                                      | 3.95                       |
| • SilkTest                                    | 3.16                       |
| • Robot Framework                             | 2.77                       |
| • Microsoft Coded UI Tests                    | 2.37                       |
| Oracle Application Testing Suite              | 1.58                       |
| • UFT                                         | 1.58                       |
| • IBM Rational Functional Tester              | 1.19                       |
| • Ranorex                                     | 1.19                       |
| • Protractor                                  | 0.79                       |
| • TestCafe                                    | 0.79                       |
| • VS Code                                     | 0.79                       |
| • Webdriver IO                                | 0.79                       |
| Usage of automation in GUI tests (RQ4)        |                            |
| • Only automation                             | ç                          |
| • Some automation, some manual                | 41                         |
| • No automation                               | 52                         |
| Automation of activities (RQ4)                |                            |
| • API tests                                   | 37                         |
| • Integration tests                           | 28                         |
| • Performance tests                           | 21                         |
| • Unit tests                                  | 19                         |

| Appendix A                                                        | xxxiii |
|-------------------------------------------------------------------|--------|
| • Regression tests                                                | 0.5    |
| • Chatbot tests                                                   | 0.5    |
| • Security                                                        | 0.5    |
| Tools used for reporting bugs found using manual tests $(RQ4)$    |        |
| • Kanban board                                                    | 48.2   |
| • Jira                                                            | 21.6   |
| • Slack message                                                   | 13.1   |
| • Others                                                          | 7.2    |
| • Mantis                                                          | 7.2    |
| • Spreadsheets                                                    | 5.9    |
| • Azure DevOps                                                    | 4.5    |
| • E-Mail                                                          | 4.5    |
| • AML                                                             | 2.3    |
| • Microsoft Teams                                                 | 0.9    |
| • Silk                                                            | 0.9    |
| • Trello                                                          | 0.9    |
| • Zephyr                                                          | 0.9    |
| • Corporate platform                                              | 1.4    |
| Tools used for reporting bugs found using automated tests $(RQ4)$ |        |
| • Kanban board                                                    | 27.0   |
| • Slack message                                                   | 10.4   |
| • Jira                                                            | 8.6    |
| • Others                                                          | 7.7    |
| • E-mail                                                          | 5.9    |
| • Mantis                                                          | 3.2    |
| • Azure DevOps                                                    | 2.3    |
| • Direct Messenger                                                | 1.4    |
| • Redmine                                                         | 0.9    |
| • Reports                                                         | 0.9    |
|                                                                   |        |

Study metadata

| Assigned identifier                                     | 27                           |
|---------------------------------------------------------|------------------------------|
| Title                                                   | "Practices in software       |
|                                                         | testing in Cameroon          |
|                                                         | challenges and perspectives" |
| Year                                                    | 2021                         |
| Author(s)                                               | Maxime Carlos and Ibrahim    |
| Reference                                               | [MI21]                       |
| Survey metadata                                         |                              |
| Year(s) conducted                                       | Unknown                      |
| Responses analyzed                                      | 30                           |
| Target population                                       | Software companies           |
| Region/scope                                            | Cameroon                     |
| Findings                                                |                              |
| Usage of test levels (RQ1)                              |                              |
| • Unit                                                  | 73.33                        |
| • Integration                                           | 76.67                        |
| • System                                                | 26.67                        |
| • Acceptance                                            | 26.67                        |
| Usage of test types (RQ2)                               |                              |
| • Ramp-up/scalability test                              | 3.33                         |
| • Recovery test                                         | 6.67                         |
| • Compatibility test                                    | 13.33                        |
| • Conformity test                                       | 26.67                        |
| • Security test                                         | 43.33                        |
| • Performance test                                      | 43.33                        |
| • Regression testing                                    | 53.33                        |
| • Usability test                                        | 63.33                        |
| Techniques for identifying test scenarios (RQ3)         |                              |
| • Technique based model                                 | 10                           |
| • White box test                                        | 10                           |
| • Partitioned analysis                                  | 13.33                        |
| • Value limit analysis                                  | 30.00                        |
| • Exploratory test                                      | 30.00                        |
| • No explicit technique                                 | 60.00                        |
| Frequency of mutation test usage (mode, median) $(RQ3)$ | Never, Never                 |
| Development of test tools for activities $(RQ4)$        |                              |
| • None                                                  | 83.33                        |
| • Test execution                                        | 6.66                         |
| • Regression testing                                    | 6.66                         |
| • Analysis and production of results                    | 3.33                         |
| • Test data generation                                  | 3.33                         |

## Appendix A

| • Scenarios generation/Scripts test | 0  |
|-------------------------------------|----|
| • Planning/tests management         | 0  |
| Usage automatic testing tools (RQ4) | 40 |
| Usage of specific tools (RQ4)       |    |
| • Selenium                          | 40 |
| • Sonarqube                         | 15 |
| • FindBugs                          | 10 |
| • XStubio                           | 5  |
| • JUNIT                             | 5  |
| • JENNY                             | 5  |
| • JMeter                            | 5  |
| • HP ALM                            | 0  |
| • Testlink                          | 0  |
| • HP UFT                            | 0  |
| • NeoLoad                           | 0  |
| • SlideShare                        | 0  |

XXXV