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Abstract 
Mobile and IoT software must perform in a dramatically greater variety of environments than traditional 
software. Yet the core testing technologies in widespread use today do not directly address this vast 
environmental variability. Cloud-based device testing is bridging the gap for now, but it is an incomplete 
solution.  This paper presents a Release-Readiness Levels Framework that provides vocabulary and a 
structure for discussing the gaps between what software testers would like to be able to test and what the 
existing tools and technologies enable them to test.  This paper then identifies the existing software 
testing technologies that might be extended to better meet practitioner needs, describes the requirements 
for entirely new software testing technologies to target the needs of mobile and IoT software testing into 
the future, and offers a glimpse into how the emergence of new testing technology is likely to proceed. 
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1 Introduction 
My academic research argues that practitioners need a new generation of tools to support mobile and IoT 
(Internet of Things) software testing. In this paper, I will present a brief history showing how mobile and 
IoT software differs significantly from traditional software. Then I will present the Release-Readiness 
Levels Framework, a tool for discussing the possible extents of software testing on a project – and for 
features and smaller details within any project. Next, I will survey the Seven Core Software Testing 
Technologies available today, highlighting their strengths and limitations and how those different 
technologies can fulfill (or not) the needs of the Release-Readiness Levels. Finally, I will present the 
requirements for the next generation of software testing technology and tools, and set context for how the 
emergence of the new technology is likely to proceed. 

This paper is drawn from my Ph.D. dissertation (Oliver 2018) and many details and specific citations have 
been omitted from this paper in the interests of time and space; they are available in my dissertation, 
which is the primary reference for this paper. 

1.1 Scope Note 

Many types of testing concerns need addressing when preparing software for production release. 
Application usability and accessibility, installation and update accuracy, security and performance, etc. All 
these are very important concerns, but this work limits its attention to Functionality Testing. 

1.2 Vocabulary Note 

This work discusses code moving from Development Focus to Testing Focus. These phrases are used to 
emphasize that no adherence to any particular software development methodology is implied (e.g. 
Waterfall, Agile, etc.). In a company with separate departments for development and testing, this change 
in focus corresponds to sending the code from one department to another. In a one-person shop, this 
change of focus corresponds to removing the Developer Hat and donning the Tester Hat. Who does the 
work and when that work is done are not in scope in this paper. The scope of this paper is what work it is 
possible to do and why that work may be worthwhile. 

Development Focus work is about trying to find a way to make something work. Testing Focus work is 
about challenging what has been created to see if it will hold up no matter what adverse circumstances 
occur. These are two creative efforts with a shared purpose (the production of successful software) but 
different – and contradictory – goals. 

2 Major Phases of Computing and Software Testing 
History tells how software testing came to be what it is today. A look at the arc of computing history 
reveals how software testing is inevitably entwined with the state of computing technology. 

The earliest computers created a 100% known software execution environment: Programs were written in 
each computer’s particular language to take advantage of each computer’s unique capabilities and 
restrictions. Unless a moth flew into the hardware1, the full context of the computer while running the 
program was predictable. Mainframes diversified, computing languages abstracted, and programs came 
to be written for multiple hardware platforms. The software execution environment could no longer be fully 
predicted, but the variations between computing execution environments remained relatively constrained. 

The emergence of desktop computing created an explosion of change. Many new hardware 
manufacturers emerged, making both new computers and various accessories to extend their 
capabilities. Peripherals all spoke different hardware languages and operating systems relied on the 
hardware manufacturers to create functioning drivers to enable their devices to work on consumers’ 
                                                        
1 The historical first bug, found in 1947. See http://www.computerhistory.org/tdih/September/9/. 
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systems. For some years, computing saw rampant device driver incompatibilities. When a consumer 
purchased desktop printing software, the consumer needed to check if their printer was on the list of 
compatible printers for that program. It was hard to predict the execution environment for software, and 
strange errors occurred (e.g. a program might not run if a peripheral not even used by that program was 
attached to the system). 

Then standards emerged and the operating systems with consumer-market dominance took over the bulk 
of interfacing to hardware (C. Kaner, pers. comm.). Most hardware manufacturers implemented exactly 
that interface, most software manufacturers programmed for only that interface, and the operating system 
passed information across the border. Execution environments for programs became largely predictable 
again, and problems related to environmental conditions became a relatively small aspect of software 
testing. 

The emergence of mobile computing created another explosion of change, several magnitudes larger. 
There is now a very rapid change cycle for hardware, operating systems, and applications. Rather than 
years, merely months pass between major changes in each category. A few consumers change quickly to 
the most recent everything; many lag a few revisions behind state of the art (Android Open Source 
Project 2018); and a few still run systems others have consigned to museums (Google Tech Talks 2013). 
Just that aspect of environmental conditions is wildly variable for mobile apps. 

The mere aspect of mobility adds to the unpredictability of environmental conditions while a program 
runs. As they move about the world, mobile devices change their network connectivity methods and 
parameters, and they are impacted by changes in the geography and weather conditions around them. 
Anecdotally, network connectivity around skyscrapers and device stability in extreme temperatures are 
both problems. Exacerbating the unpredictability problem, mobile devices consume input from a wide 
variety of sensors that previously were specialty equipment but now are commonplace, like 
magnetometers and accelerometers. Applications are expected to respond to a great deal of that data, 
and sometimes the mobile operating system imposes the new conditions on the programs whether the 
programs handle them gracefully or not (e.g. screen orientation changes, dimming the screen in response 
to changes in ambient light, replacing the active network connection details at any moment, etc.). These 
types of environmental unpredictability cannot be solved by standardization of interfaces; they are 
inherent aspects of mobile computing. 

IoT software shares many of the environmental characteristics of mobile computing, especially the deep 
reliance on embedded sensors. 

This history shows that mobile and IoT apps operate within a fundamentally different scale and scope of 
environmental unpredictability than programs in any prior computing era. To be effective, automated 
software testing tools need to address this unpredictability directly. 

3 Release-Readiness Levels Framework 
When I worked as a practitioner, specific tacit goals underpinned my software testing activities. As I met 
other senior testers and discussed experiences with them, I found resonance in how we approached our 
software testing efforts. We all wrestled with the question of judging when software was performing well 
enough that we could recommend its release. Our project managers made the release decisions, but they 
expected us to render professional judgments and supporting evidence to inform those decisions. 

We lacked a good framework for discussing the options. Historically, the ISO/IEC/IEEE 291192 standards 
and their predecessors have not been entirely helpful. Guidance on managing the testing process or 
doing requirements traceability does not directly answer the core problem: How to judge if the software 
will perform adequately in the field. There is tension between how much testing is feasible to do and how 
much productive information about the range of field conditions is needed to enable sound decision-
making. 
                                                        
2 http://softwaretestingstandard.org/ 
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My Release-Readiness Levels Framework (Figure 1) captures one perspective on how to assess that 
tension and how to discuss what additional testing might be desirable at any point in the project. 
Underlying this model is the concept of exposing the software to increasingly difficult challenges, thereby 
increasing knowledge about the variety of conditions in which the software will perform acceptably. 

Each level in the Release-Readiness Levels Framework applies to individual features, communicating 
feature sets, and to the program as an integrated whole. The further testing goes through the levels, the 
further confidence develops that the software will behave desirably in a wider variety of circumstances. 

Note that this is a map of the testing possibilities – not a statement of required steps. The appropriate 
point at which to release the software in question is a Project Management decision and varies for each 
program and often for each release. 

 

Figure 1. Release-Readiness Levels Framework 

3.1 Level 0: Dev Testing 

Level 0 testing occurs during Development Focus, and its goal is to assess whether the intended 
functionality has been implemented. Characteristically, very small aspects of program behavior are 
analyzed separately from all other behaviors of the program. In modern software development, Dev 
Testing consists mostly of unit tests, but this is also where style checkers and other static code analyzers 
are usually applied. 

Software released at Level 0 (Dev Testing) may contain missing, partly-functional, and incomplete 
features. It may not install cleanly into any environment other than the Development Environment, and it 
may not work as a cohesive whole even if it installs cleanly. Professional software development shops 
usually test further than this before production release. 

3.2 Level 1: Ready to Test 

The goal at Level 1 is to assess whether the installed software is ready to be challenged by Testing 
Focus work. Characteristically, functionality is tested only surficially, just enough to show whether the 
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program crashes with trivial ease or permits access to all features of current interest; it is common in the 
early stages of a project for features to be missing or known to be not ready for Testing Focus yet. 

Specific behaviors checked at Ready to Test tend to focus upon whether the install process worked 
correctly and upon the basic stability of features to be tested. Happy-path scenarios in which the software 
is used exactly as intended are checked, along with the most common or most predictable error-path 
scenarios. 

Software released at Level 1 (Ready to Test) should install properly into expected operating environments 
but may break if used even slightly differently than anticipated, whether by user action, data state, or an 
operating environment that was not tested. 

3.3 Level 2: Closely Controlled 

The goal at Level 2 is to assess whether features work when challenged by tests with carefully controlled 
parameters. Characteristically, test data is hardcoded but may occasionally be drawn from small lists. 
Testing activities consist of challenging the program’s assumptions in various ways, subjecting it to 
atypical usage patterns, data that is potentially hard to process, easily-triggered system and 
environmental interruptions, etc. 

Software released at Level 2 (Closely Controlled) is likely to suffer many field failures on systems that 
differ from Development and Testing Environments; it may also break if used in unanticipated ways or if 
used on a continuous basis for some block of time, as characteristically tests at this level consist of very 
brief runs of the app to test a specific behavior, followed by resetting the app to a clean state before 
testing the next specific behavior. Such run intervals provide clear boundaries between tests, making it 
easy to identify which test failed, but these runs are markedly shorter than most scenarios in which users 
will actually use the app. 

3.4 Level 3: Predictable Variations 

The goal at Level 3 is to assess whether features of the program continue to work when test conditions 
are significantly loosened and many predictable variations in those parameters are exercised. Test cases 
at this level take different values at each execution, drawing specifics from large sets rather than fixed 
details or small lists of possibilities. Characteristically, Predictable Variations tests intensely vary one or a 
few variables while holding others constant, as the knowledge sought is about how those specific 
variations alter the program’s response. 

Software released at Level 3 (Predictable Variations) is markedly more stable in a diverse variety of 
conditions than software released at Level 2 (Closely Controlled), but it may still experience a moderate 
number of field failures. These stem largely from unexpected patterns of use and from untested 
environmental and data conditions. The more aspects of environmental unpredictability not tested, the 
higher the likelihood of finding many problems after release. 

3.5 Level 4: Discovers Unexpected 

The goal at Level 4 is for testing to uncover problems that no one on the project could predict, sometimes 
that no one on the project could imagine. Experienced practitioners regularly exchange tales of finding 
bugs like this, often accidentally, because modern programs are complex and contain many tacit 
dependencies within themselves, with their operating environment, and with their data. 

In various ways, a program and its operating environment tested at this level are placed under stress. 
Many of the test techniques for finding these unpredictable bugs consist of HiVAT (High Volume 
Automated Testing) techniques, such as long-sequence tests, long-duration tests, and random variations 
of structured input (i.e. fuzzing). Characteristically, the scale of tests increases dramatically at this level. 
HiVAT techniques are intended to efficiently run hundreds of thousands, millions, or scrillions of specific 
tests. 
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Senior technical testers in the practitioner community have created HiVAT testing efforts for decades, but 
the approach typically requires programming expertise and these techniques are not widespread in 
general practice. 

Software released at Level 4 (Discovers Unexpected) tends to experience some field failures as 
combinations of conditions are discovered in the field that were not reached by intensive testing, but 
these failures are rarer than at earlier levels. 

3.6 Level 5: Exhausted Capacities 

The goal at Level 5 is for testing efforts to exhaust their capacities, given the capabilities of the suite of 
tools and techniques and the time available. Stresses upon the software are dramatically increased, 
sampling scope approaches closer to exhaustive, and system testing increases the variations in 
exercising interleaved, cooperating, and coexisting features. 

This level of testing intensity is typically done when the risk of failure is extremely high (e.g. data-
processing logic that could corrupt the database if done wrong, life-support systems, high-impact 
infrastructure systems, etc.). Possibly the best-known example of Level 5 (Exhausted Capacities) testing 
is the preparations made for Y2K as computing approached the year 2000. 

Computing professionals not involved in the Y2K transition often lack understanding of the details. The 
problem was caused by a vast quantity of legacy code that assumed all years fit the format 19xx, and so 
stored only the last two digits to distinguish the year; the imminent arrival of the year 2000 meant all that 
code was going to break and comparisons for which data was older or newer would be incorrect unless 
four digits were compared. Surficially, the answer appears to be as simple as just replacing two-digit 
storage with four-digit storage. 

However, the reality was a great deal more complex than that. Many companies attempted to patch their 
legacy software only to find that every patch spawned multiple new problems; the harder they tried to fix 
their code, the less functional their software became. In the United States, many banks sold themselves 
to the few banks with Y2K-compliant software, and antitrust regulators approved the sales because the 
financial infrastructure of the country had to continue to work reliably (C. Kaner, pers. comm.). 

Problems riddled software at all levels, and companies in a vast array of disciplines created entire 
duplicate computing systems and networks so they could advance the date in this test environment and 
see what would break and what fixes actually worked. That degree of duplicate computing hardware 
alone cost an exorbitant amount (easily millions or billions or more, worldwide), and very significant 
human time was invested in testing and retesting critical systems. Y2K was a worldwide test effort that 
covered years. Popular understanding is that Y2K was a lot of noise made about nothing, because when 
the clock turned over, only very minor things broke; the reality is that Y2K was an incredibly successful, 
Level 5 testing effort that exhausted the capacities of the people, technology, and time invested in it. 

Software released at Level 5 (Exhausted Capacities) experiences the fewest possible field failures, but 
some failures remain possible. 

3.7 Release-Readiness Levels Recap 

To properly assess whether mobile and IoT software will perform adequately in their field conditions of 
massive environmental unpredictability, software testing efforts need to include tests at Level 3 
(Predictable Variations) and Level 4 (Discovers Unexpected). Some critical behaviors within many apps 
likely deserve tests at Level 5 (Exhausted Capacities); in some cases, whole software systems may merit 
that level of testing (e.g. autonomous vehicles). So, what levels of testing are enabled by our current 
software testing technologies and tools? 
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4 Core Software Testing Technologies 
The process of software testing involves creating tests, executing them, and evaluating what happened 
as a result. Whether manual or automated, executing a test relies on specific technology to make it 
function. These software testing technologies are mechanisms for exercising a program in directed ways 
or for obtaining information about the software’s behavior. They are the keys which enable different test 
methods, the gateways which define the character of what kinds of tests are possible. 

I identified seven core testing technologies present in today’s readily available tools and the academic 
research literature: 

1. Physical devices 
2. Virtual devices (emulators and simulators) 
3. Simulation environments 
4. Mechanisms for interacting with the Visual GUI Tree 
5. Image-comparison 
6. Code manipulation (e.g. xUnit, code instrumentation, etc.) 
7. System monitoring 

Each technology enables certain kinds of tests and is better-suited to some types of investigations than 
others. Existing tools and testing approaches fulfill a technology’s potential to differing degrees, and each 
implementation of a technology may be evaluated in terms of how well it handles the environmental 
unpredictability characteristic of mobile and IoT software. 

4.1 Physical Devices 

Testing on physical devices is the baseline testing technology. When programs were written for just one 
computer, testing the program meant running it to see if it worked, at least well enough for the intended 
purpose at that time. Beginning programming students do the same thing today. 

As computers diversified, software testing on physical devices expanded to include compatibility 
assessments between the program and different execution environments. In the desktop computing era, 
software development companies typically had test labs containing a variety of supported equipment. 
Companies could buy representative hardware for all their major supported systems and expect to use 
those machines for years; significantly new systems came out every few years when chipsets changed, 
and the operating systems updated every few years as well. 

In the mobile era, the comprehensive in-house test lab has ceased to be feasible. Instead of dozens of 
distinct hardware platforms, there are thousands in use worldwide (OpenSignal 2015). New device 
models appear at least once a year from most device manufacturers, and sometimes more frequently 
than that; operating systems receive frequent major updates (sometimes several times per year) and 
nearly continuous minor updates. The scale and pace of mobile environment changes make maintaining 
traditional in-house test labs of physical devices for all in-scope systems prohibitively expensive. 

Thus, the environmental unpredictability problem mobile software testing faces for this technology is 
simply access to a diverse-enough collection of physical devices. 

4.1.1 Accessing Sufficient Diversity 

One strategy is to test only on the top 10-15 devices in use by a mobile app’s target users, broken into 
strata of high-end devices, mid-range devices, and low-end devices; which devices belong in which 
grouping changes very quickly, as new devices are released. This is an example of Level 2 (Closely 
Controlled) testing because the test data varied here is a small list (10-15 devices). Despite its limitations, 
this strategy should work adequately for reasonably homogeneous target populations; as the diversity of 
target users increases, more of their systems will not be represented in this sampling strategy. 
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Arguably, the most common option in modern app development is cloud-based testing. Fundamentally, 
these cloud services leverage existing software testing technologies to provide networked manual or 
automated access to physical devices hosted and maintained by the cloud service provider; various 
providers exist and exactly who is in business changes over time. Because so little can be inferred about 
the stability of software on other devices based upon its behavior on one device, mere replication of tests 
across many different mobile devices is not very informative. Tens or even a few hundreds of devices 
tested is still a small fraction of the possible thousands of devices that a mobile app could be deployed to, 
so it is difficult for mere replication across devices to lift testing beyond Level 2 (Closely Controlled). 
Further restricting the power of cloud-based device testing, the kinds of tests that can be performed on 
such devices are bounded by the testing interfaces provided by the service, and that limits their power. 

4.1.2 Technology Strengths and Limitations 

The greatest strength of testing on physical devices is trustworthy realism about how apps will behave on 
that device. Although that observation seems obvious, fidelity to reality is a great enough issue in mobile 
app testing that the point is emphasized by academics and practitioners alike (Delamaro, Vincenzi, and 
Maldonado 2006; Ridene and Barbier 2011; Muccini, Di Francesco, and Esposito 2012; Nagowah and 
Sowamber 2012; Gao et al. 2014; Vilkomir and Amstutz 2014; Knott 2015). 

One of the motivators for the emphasis on realism is the mobile fragmentation problem. Mobile hardware 
varies greatly in chipsets; screen size, display resolution and pixel density; number and types of network 
interfaces, sensors, and embedded devices (e.g. camera, speakers); quantity of working memory and 
local storage space; and battery performance. The current state-of-the-art solution to this vast variety is to 
test on a sufficient number of real devices, where “sufficient” is interpreted individually by every software 
publisher. 

Some limitations apply to using physical devices as a testing technology. Mobile devices are consumer 
devices, and (Google Tech Talks 2013) points out that consumer devices are not designed to run 24x7, 
so hardware used for extensive testing will fail after a few months and need replacing. 

4.1.3 Implementation Limitations 

Another pragmatic limitation on the number and type of tests executed remains the financial cost of 
testing. Even though cloud-based testing services have dramatically lowered the costs to software 
producers of provisioning and maintaining physical devices, these services still cost money. Budget and 
service constraints limit the testing minutes purchased for a project, forcing tradeoffs in what is tested and 
how extensively. 

Cloud-based pools of physical devices vastly improved access to a variety of devices, but there is little 
variety in the physical or network environments of server rooms, providing little opportunity to exercise the 
embedded sensors and other equipment in cloud-based mobile devices. Examining these aspects of 
mobile devices in any detail still requires physical access to the appropriate device, and the common 
solution is for individuals to move around the world, interacting with each device one at a time. The 
obvious problems in scaling this approach explain the appeal of crowdsourcing3 testing, but that approach 
lends itself to haphazard data collection and great challenges in repeatability. 

Again, cloud-based testing is limited in its possibilities by the testing interfaces that the service providers 
support. Generally, it is not possible to extend or replace a provider’s testing framework, so tests are 
constrained to the types and design styles the provided frameworks support. 

                                                        
3 The practice of outsourcing testing to a crowd of people, mostly without any technical training, in an 
attempt to obtain useful feedback about how the software will perform for real users (Knott 2015, 141–
45). 
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4.1.4 Physical Devices Technology Summary 

Testing on physical devices yields highly trustworthy results but also incurs test-management overhead 
costs that can be significant, somewhat limiting scale. Cloud-based providers close the gap in trying to 
examine the effects of all the combinations of hardware and operating system versions, but they do so in 
a server room environment that provides little scope for exercising the embedded sensors and other 
equipment in mobile devices. A robust solution to scaling testing that exercises embedded sensors and 
equipment is either not yet invented or not yet widely available. The types and design styles of tests run 
on cloud-based devices are limited to what the provider’s frameworks support; support for custom testing 
needs is quite rare. 

4.2 Virtual Devices 

Virtual devices leverage readily-available and affordable hardware to mimic the specific hardware and 
operating environment of less easily obtained systems. The manual analog is the collection of techniques 
involved in desk-checking, where a human reads through the code, pretending to be the computer, 
analyzing how the program is going to run. 

Computer-based virtual environments appear to have their roots in the first time-sharing operating 
systems of the 1960s (Creasy 1981; Pettus 1999). Over the next several decades, computing 
professionals developed a decided preference for emulators over simulators. Simulators ran faster, but 
they characteristically used the full resources of the host computer to perform the computing tasks. 
Emulators created representations of the foreign hardware within the host computer, using just the 
resources the real device would have available and using a virtual chipset to execute the foreign program 
at the binary or system-call level. Testing on simulators gave an approximation of how the program would 
behave on its target computer, but the exact fidelity in representing the emulated device created great 
trust in the results obtained while using the emulator. 

At the beginning of the mobile era, devices were especially resource-constrained, making it difficult to run 
testing software on the physical devices. Vendors addressed this problem by providing virtual devices to 
enable testing (Satoh 2003). Although traditional programs tend to be developed on their target platforms, 
mobile apps are developed on desktop computers and deployed to mobile devices later. Consequently, 
virtual devices are everyday tools during mobile app development today. 

4.2.1 Technology Strengths and Limitations 

The primary strengths of virtual devices for mobile apps today are enabling development tasks on non-
mobile systems and the ease of switching between devices. The practical matter of cost savings is 
another strength inherent in the technology, as the actual physical devices are not a factor. 

The history of simulators and emulators from the desktop era has shaped expectations about them in the 
mobile era. When the term “emulator” is applied (e.g. the Android Emulator), the implication is that it will 
provide the exact fidelity trustworthiness of the prior era. 

Unfortunately, there are significant limitations to the virtual devices representing mobile devices. Although 
the mobile CPU, OS version, RAM, and screen size, resolution, and pixel density are virtually 
represented, it is well-understood that sensors and other embedded hardware commonly are not. 
Functionality involving the camera, GPS, accelerometer, microphone, speakers, gyroscope, or compass; 
sensors for ambient light, pressure, temperature, humidity, or proximity; and network connections like 
Bluetooth, Wi-Fi, NFC (Near Field Communication), and cellular communication for 3G, 4G, etc. – all 
these are difficult or impossible to test on virtual devices, especially those provided by the platform 
vendors (Muccini, Di Francesco, and Esposito 2012; Griebe and Gruhn 2014; Knott 2015, 115). It is not 
clear that including all these embedded components in a virtual device would even be useful; most of 
these are pure input mechanisms, not manipulated by either the user or the program. Merely representing 
them as pieces of hardware in a virtual device is not enough to make them usable; a different technology 
is required. 
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4.2.2 Implementation Limitations 

The Android ecosystem faces another set of serious limitations, stemming from its open-source nature. 
Microsoft controls their operating system, and Apple controls both their hardware and software, so these 
ecosystems may not have the same problem. 

However, the Android OS is commonly customized by both hardware manufacturers and cell service 
providers. Some of this customization is required to make Android work on the equipment; other aspects 
are customized for user experience, and sometimes these changes are very significant functionality 
differences. Complicating matters, most of these customizations are proprietary and therefore not publicly 
documented. 

This means the best the Android Emulator can do after setting up the partial-hardware representation of a 
device is layer on a stock version4 of Android OS. Seen in that light, it is not just that features to send 
context data to the virtual device are awkward to use or unavailable, it is that testing on a virtual device 
lies about how well things will work in the field. The virtual devices are idealized deployment 
environments that incompletely and inaccurately represent the real devices. This limits the power of 
testing on Virtual Devices to Level 1 (Ready to Test) because the information obtained is only a ghost of 
reality. 

This explains why experienced practitioners strongly advise testing primarily on physical devices in real 
environments (Knott 2015, 3–4), limiting the use – if any – of virtual devices to only the most basic, 
simplistic tests (Kohl 2012, 278–79; Knott 2015, 52). 

4.2.3 Virtual Devices Technology Summary 

Testing on virtual devices enables effective development of mobile apps, since development is done on 
different systems than where the software is deployed. However, all mobile virtual devices lack 
completeness; significant hardware components are routinely omitted, and Virtual Device technology 
alone is insufficient to exercise the sensors and other embedded equipment even if they were included. 
The Android Emulator diverges even further from exact fidelity in representing a physical device because 
it can only apply a stock version of the Android operating system, absent all proprietary customizations 
made by hardware manufacturers or cell service providers. 

4.3 Simulation Environments 

Simulation environments take simulation beyond the device level, instead creating virtual representations 
of various aspects of the world surrounding the mobile device. Academic work has mostly studied 
networked communication scenarios and a few richer environmental context simulations. 

There is little discussion in the practitioner literature about simulation environments being used for mobile 
software testing. This suggests that good tools for useful mobile simulation environments are not 
generally accessible to practitioners. 

4.3.1 Technology Strengths and Limitations 

Simulation environments bring realistic deployment scenarios into a controlled lab environment, allowing 
intensive variation of specific aspects of interest without the expense of travelling to the correct conditions 
or waiting long enough for the correct conditions to occur. Theoretically, this should enable testing at 
Level 3 (Predictable Variations), Level 4 (Discovers Unexpected), and Level 5 (Exhausted Capacities). 

                                                        
4 (Google Tech Talks 2013) explains that all Android Emulator images are rooted (i.e. the user account 
has been given root access, meaning full control of the OS), although consumer devices generally are 
not; and that the Android OS applied in the Emulator has been modified to be more test-friendly and to do 
more logging. For testing purposes, these are practical, probably desirable things, but they further 
distance the results from exact fidelity. 
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Most applications of simulation environments also involve sophisticated modeling of the conditions of 
interest, to ensure the simulation meaningfully represents real conditions. For example, performance 
testing of websites typically involves estimates mixing percentages of different representative types of 
users so that realistic traffic and session loads can be generated. This complexity tends to isolate use of 
simulation tools (like those for performance testing websites) to only a few, highly-specialized testers 
brought in as consultants when a company has a specific need. Simulation environments are rarely used 
– if at all – by most practitioner software testers. 

4.3.2 Implementation Limitations 

The primary limitation of simulation environments applied to mobile testing today is that there are so few 
instances exploring it. A secondary limitation is that existing tools focus on testing user-generated events 
in short bursts but do not enable testing extended usage scenarios (an hour or more) (Meads, Naderi, 
and Warren 2015); this means that the simulation environments are not representative of reality in terms 
of how users will use the apps, the devices, the network resources, etc. Furthermore, the focus on user-
generated events means little testing is being triggered by sensor readings or background services, 
despite those being extremely common vectors of input to modern mobile and IoT devices. 

4.3.3 Simulation Environments Summary 

Simulation environments contain rich potential to assist in testing mobile and IoT devices, but their 
potential is not well-addressed at this time. Academic work investigates networked communication 
scenarios and some environmental context simulation, but the scope of the tests is limited overall. 
Practitioners seem to have no useful access to tools for applying simulation environments to testing 
mobile apps. 

4.4 Visual GUI Tree 

Mechanisms for interacting with the Visual GUI Tree form arguably the most commonly used GUI 
application testing technology in use today. The Visual GUI Tree is the hierarchical arrangement of 
objects forming the rendered display of a modern GUI. All the currently-visible objects on the screen (e.g. 
buttons, images, etc.) are part of it, but so are many invisible objects that control how objects on the 
screen are placed (e.g. layout managers which arrange contained objects in a row horizontally, vertically, 
or in a grid). Assistive technologies like screen readers for blind users leverage the Visual GUI Tree, so it 
has wide availability on desktop systems, in web browsers, and on mobile devices. 

To encode a test accessing the Visual GUI Tree, some absolute identification of the object in question is 
required. The earliest interaction mechanisms identified objects based on their coordinates on the screen, 
and that remains a common fallback mechanism today. Some interaction mechanisms scrape the screen 
to locate specific text, which is then used to identify the object of interest; this allows the text to appear at 
different coordinates and not break the encoded test. The most reliable means of accessing a specific 
object is to use a distinctive attribute of that object, commonly some kind of identifier or xname value. If 
such a unique identifier is not available, then the object’s XPath location in the Visual Tree (i.e. the path of 
elements that must be traversed to reach the desired element) may be used to navigate precisely to the 
desired object. Once a desired GUI object is located, testing frameworks interact with it as an object, 
entering text or sending click commands; more mobile-centric frameworks provide gesture commands, 
such as swiping the screen in a particular direction. 

Tools using the Visual GUI Tree are prolific and widely used today, as this is an excellent technology for 
replicating user interactions with a GUI. The vendor-provided automation tools for each mobile platform 
use this technology, as do GUI Record and Replay tools. All the cloud-based device services primarily 
leverage the Visual GUI Tree to replicate user interactions. 

Most of the tests implemented in Visual GUI Tree tools are Level 2 (Closely Controlled) tests, restricted to 
specific data hardcoded into each test, repeated verbatim with every test run. This level of detail is the 
baseline scenario for automated testing. Unfortunately, it is rare for these tools to offer features to 
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parameterize test case data, much less to determine it programmatically at runtime, features that are 
required to enable tests at Level 3 (Predictable Variations). 

Whether customizations to extend the power of tests is possible in Visual GUI Tree tools usually depends 
on how flexible a programming language the tool uses as its test scripting language. The need to program 
scripts in a more sophisticated manner is at odds with the marketing of these tools, much of which 
focuses on enabling testing by non-programmers, so features enabling coding flexibility are not a high-
priority for many tool-makers. 

In recent years, an increasing number of testing services have advertised pre-packaged test suites 
designed to test any app without human effort. These typically install the software and apply Random 
Monkey testing to the GUI, looking for crashes. Anecdotally, these generic test suites are finding bugs in 
many mobile apps, but they necessarily cannot be checking substantial functionality of any of them 
because no generic test suite can know anything about the functionality of any program. Consequently, 
these tests operate at Level 1 (Ready to Test). 

4.4.1 Technology Strengths and Limitations 

Ever since GUIs became widely-implemented using objects, interacting with those objects by accessing 
the Visual GUI Tree has become widespread across desktop, web, and mobile applications. It is an 
excellent way to automate interaction with a GUI in a manner that replicates how humans interact with it, 
through exactly the same objects accessed in almost the same ways. 

When the Visual GUI Tree works, it works very well, but it cannot work when it cannot uniquely identify an 
object. (Chang, Yeh, and Robert C. Miller 2010) note that sometimes GUI objects are not given unique 
identifier attributes. This happens rather frequently in practice, because developers often have no need of 
such identifiers to uniquely access the object; consequently, the identifiers required by Visual GUI Tree 
testing tools may only be added by special request to accommodate testers. As a matter of human 
process, this is not a reliable system; it is tedious work for the developers and adds clutter to their code. 

When unique identifier attributes are unavailable, Visual GUI Tree tools fall back to XPath navigational 
routes to objects or to specific coordinates on the screen. Neither of these works with variable GUI 
elements – items that may change position in a list as more data is added to the application, or items that 
are programmatically populated into a display template based on runtime selection filters. 

Consider a kitchen pantry app that is asked to display only the perishable items expiring in the next week. 
Each of those items is selected for display at runtime based on the state of the database and the value of 
the timestamp when the query is issued; in mobile apps, these are typically displayed as individual GUI 
objects, but there is no reliable identifying attribute that can be assigned to them and expected to persist 
across repeated queries. Sometimes identifiers are dynamically created for such elements while the 
program runs, but new values are dynamically created the next time the program runs, rendering scripting 
a repeatable test impossible. There is also no guarantee that each type of item will be unique (how would 
one distinguish between five different bananas?), and elements may not be populated into the display in 
the same order every time. The identification information simply is not naturally present to set up 
repeatable tests that will succeed across runs of the application. Automating tests in these situations 
quickly becomes more a matter of coordinating and maintaining test data (self-verifying records or known-
state of the whole database) than about testing the behavior of the app. 

The Visual GUI Tree also does not handle any case where one GUI element combines several different 
behaviors within it, determined by position of interaction on the element rather than by its object identity. 
Image maps on web pages are good examples, as clicking on different parts of the image triggers 
different actions. Many mobile games have visual control screens that surficially resemble image maps, 
where things the user can choose to do are carefully integrated into an overall image. 

The Visual GUI Tree is excellent technology for testing behaviors triggered by user actions, but not 
sufficient for testing behaviors not triggered by user actions. Context-dependent inputs from various 
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sensors and most error scenarios need another testing technology applied before they manifest, because 
they result from something else happening while the user is using the app. 

4.4.2 Implementation Limitations 

On the one hand, using the Visual GUI Tree for testing is a mature technology that has been well-
developed across several generations of computing platforms, with well-understood recurrent difficulties 
and well-known solutions to those difficulties. On the other hand, certain usage limitations have never 
been robustly supported. 

Examples from desktop applications (Chisholm 1997; Nyman 1999; Borjesson and Feldt 2012; 
Bauersfeld and Vos 2014) and web applications (Stocco et al. 2014) note that custom objects are not 
handled well in Visual GUI Tree tools. Custom objects derive from established objects but behave 
differently, often using the technology in non-standard ways (e.g. a list element that contains different 
background colors for each list item but no text, making a color-picker). The testing tools that rely on the 
Visual GUI Tree only know about the standard GUI widgets; they cannot know about the custom-created 
ones, and few tools enable programming extensions to the tool to allow accurate processing of custom 
GUI widgets. 

In a similar vein, (Nyman 1999) and (Nguyen et al. 2014) document difficulties in handling GUI 
components with context-dependent text strings, such as windows titled after documents or error 
messages with non-constant details. Sometimes the record-and-replay usage scenario for Visual GUI 
Tree tools is blamed for the lack of features to handle this need, as the naïve understanding of record-
and-replay expects exact repetition of all details and does not imagine tuning the recorded script to be 
more powerful and to handle variations fitting specific patterns. 

(Chang, Yeh, and Rob Miller 2011) point out that some textual data that is read programmatically from 
object attributes may not be formatted the same way as the text string is displayed on screen. Date and 
time stamps are particularly likely to diverge. Where the discrepancy matters, this ought to be easily 
addressed with a little code during Testing Focus work. However, this faces the same difficulty as 
handling custom GUI widgets and handling parameterized scripts: Much of the marketing around these 
tools focuses on enabling testing by non-programmers, so features enabling coding flexibility are not 
high-priority for the tool-makers. 

(Gronli and Ghinea 2016) note that mobile apps reliant on animations and clock-based display changes 
can exhibit erratic failures when tests are replayed, due to timing issues that render some GUI widgets 
inaccessible or not present when the test script expects to find them. This is something of a surprise, as 
the need for a “wait for element” feature is well-established in the history of using these tools prior to the 
mobile era; however, (Google Tech Talks 2013) suggests that new instantiations of using this technology 
may be independently rediscovering this need rather than considering it essential from the beginning. 

4.4.3 Visual GUI Tree Technology Summary 

The Visual GUI Tree is both an excellent and dominant technology for testing mobile apps, but the 
technology suffers from a persistent lack of capacity to handle custom objects and display patterns that 
vary in specific details, such as error messages. These limitations are exacerbated by variable GUI 
elements, which are becoming more common in mobile apps because it saves memory to not instantiate 
elements not visible on the screen; typically populated as list elements at runtime, these elements 
commonly lack unique identifiers, reliable paths to their location in the GUI Tree, and unique text 
contents. Another testing technology is required to test behaviors that result from context-data input or 
most error conditions, as these situations are not triggered by user actions. 
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4.5 Image Comparison 

Image comparison tools take a snapshot of the rendered display of a running program then compare that 
snapshot to a reference image previously captured. Either whole-image or part-image comparison may 
be done. The manual version requires humans to visually compare images to a reference standard. 

Testing tools at least as far back as the 1980s used whole-image comparison techniques (C. Kaner, pers. 
comm.), doing pixel-by-pixel comparisons of whole windows. These tools were fragile (every tiny change 
invalidated the reference image, even if an element just shifted left by one pixel) and fell out of general 
use, but there has been a resurgence in their use for testing mobile apps, where they are used to 
compare an entire screen’s content to a baseline image (Knott 2015, 109). 

The second generation of this technology is part-image comparison, which analyzes the snapshot of a 
running program to see if it contains the reference image somewhere within the whole picture. This is 
much more resilient to changes in the GUI layout. (Potter 1993)’s demo tool Triggers is commonly cited 
as the first work of this kind, although (Horowitz and Singhera 1993) used bitmap part-images in their 
fully-implemented GUI testing tool XTester, which went far beyond a demo implementation of the idea. 

However, comparison of part-images did not occur widely until the introduction of Sikuli in 2009; the 
technology required advances in computer vision algorithms and in hardware capacities to become 
practical (Yeh, Chang, and Robert C. Miller 2009). Sikuli emerged from work seeking to help users 
confused by a GUI icon find help documentation without needing to guess the icon’s text name. (Chang, 
Yeh, and Robert C. Miller 2010) applied Sikuli specifically to automated testing, focusing primarily on the 
benefits of unit tests established to check the implementation of Visual-Meaning behaviors, such as the 
Play button on a video player changing images from the Play triangle to the Pause bars5 after the Play 
button was clicked; their scope limited itself to checking the GUI layer only, without any underlying 
connections to application functionality, so in this example nothing would be known about whether or not 
the video player could successfully show recorded video. 

4.5.1 Technology Strengths and Limitations 

Part-image comparisons are significantly better-suited for testing Visual-Meaning situations than tests that 
try to use the Visual GUI Tree for this purpose. (Groder 10/26/2016) contains an enlightening example 
test case in which the image searched for on-screen is that of Lake Superior rather than of a traditional 
GUI element object. The picture of Lake Superior is a more accurate indicator of the intended content 
than any other; if the image claims to be of Lake Superior but actually depicts an elephant, tools using the 
Visual GUI Tree data will not notice the problem, but image-comparison technology should. However, 
searching the whole screen for part-image matches is a computationally expensive operation. This means 
these tests run slowly, which limits how many are worth running. 

Another problem with using image-comparison for tests is that the technology can only deal with what is 
currently visible on the screen – if the target is scrolled off the visible portion of the screen or occluded by 
something else, image comparison cannot find it (Chang, Yeh, and Rob Miller 2011; Groder 10/26/2016). 
Scrolling may alleviate this problem, but anything that cannot currently be seen cannot be tested. 

4.5.2 Implementation Limitations 

The current set of image-comparison tools is hampered in effectiveness by several technology problems 
that may be addressable with improved code and algorithms. One impact of these is that the tools do not 
cope gracefully with differences in image size, color, or style (St. Amant et al. 2000; Chang, Yeh, and Rob 
Miller 2011; Borjesson and Feldt 2012; Groder 10/26/2016; Gronli and Ghinea 2016; Garousi et al. 2017); 
Sikuli was designed to address these variations (Yeh, Chang, and Robert C. Miller 2009), but in practice it 

                                                        
5 Notice how you had to pause and translate those word-descriptions into the pictures and ?  That’s 
the essence of a Visual-Meaning situation: The picture conveys the meaning directly and anything else 
just points to the intended meaning through a stand-in representation. 
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is not functioning well enough. Practitioners relying on image comparison tests also have to rely on 
workarounds they need to implement themselves to get around tools that can only recognize one 
baseline image per screen; this implies that every device tested requires its own library of baseline 
images (Austin Test Automation Bazaar, pers. comm.). This means tests relying on this data are at best 
Level 2 (Closely Controlled). 

Some commercial testing tools, like Eggplant, are encouraging companies to replace their Visual GUI 
Tree test suites with Image Comparison test suites, selling this next-generation of tools as based on how 
users interact with applications rather than on “outdated” code-centric testing approaches6. What that 
pitch does not make clear is that the resulting test scripts require collecting and maintaining a mammoth 
library of GUI element images, because images need to be collected for each individual element in all its 
states (selected, enabled, disabled), in every language, in every platform look-and-feel, in various sizes, 
etc. Collecting and maintaining all that test data is a significant and continuing operational cost, 
consuming time and energy testers could otherwise spend on testing the app instead of maintaining test 
data. 

Image Comparison is also a poor technique for text recognition. (Chang, Yeh, and Rob Miller 2011) points 
out that existing OCR7 techniques are designed for printed pages; thus, they expect white backgrounds, 
high-resolution text, and rectilinear layouts. Yet screen images may be significantly lower resolution than 
paper, contain colorful backgrounds, and be laid out much less predictably – all details which challenge 
the success of text-recognition via images. (Borjesson and Feldt 2012) observed a 50% failure rate in 
Sikuli’s ability to distinguish between the single characters ‘6’ and ‘C’. 

Lastly, the existing tools poorly handle moving image data, whether in GUI animations or in extracting 
data from video clips (Borjesson and Feldt 2012; Chang, Yeh, and Robert C. Miller 2010). It is not clear 
how much this is a limit of the technology, how much a limit of the computer vision algorithms, and how 
much a limit of the hardware processing resources in use at this time. However, mobile platforms seem to 
be standardizing on applying more animation to GUI elements for interface usability reasons (Tissoires 
and Conversy 2011), so this limitation to the tools is a significant challenge. 

4.5.3 Image Comparison Technology Summary 

Computer vision technology has enabled the ability to test for Visual Meaning problems, which is a great 
advance, but even part-image comparison is not suited for all purposes. The approach fundamentally 
cannot address functionality not visible on the screen; as such, it cannot trigger tests for incoming context 
data nor for most error conditions. Large libraries of images are currently required to apply the tools 
across platforms and different display characteristics, and searching for images on the screen slows the 
tests compared to looking for an identifying attribute via the Visual GUI Tree. Image-comparison of text is 
error-prone because OCR algorithms are designed for a much higher resolution and sharper contrast 
scenario. Image Comparison Technology is an excellent complement to Visual GUI Tree Technology, but 
it is not suited to be a complete replacement of it. 

4.6 Code Manipulation 

This large category encompasses many types of code analysis and modification. All the techniques utilize 
some insight into the code’s details to enable testing, and all require programming. 

In modern software development, arguably the most commonly used of these techniques is the xUnit 
framework. Primary use of xUnit tests is by developers during code creation and code maintenance 
activities; tiny, specific, very quick execution unit tests are the backbone of most Continuous Integration 
systems, serving as quick-feedback flags if code changes break the build (Beck 1999, 59–60). These 

                                                        
6 This sales tactic is afflicting web-based tests also. (Stocco et al. 2014) is about a tool to automatically 
transform DOM-based tests to image-comparison ones. DOM (Document Object Model) is the object-
based representation of a webpage. 
7 Optical Character Recognition 
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kinds of unit tests form a very important foundation for stabilizing code before it passes from Development 
Focus to Testing Focus. 

Other applications of Code Manipulation Technology include code coverage tools, which report the 
percentage of the lines of source code executed during a test suite run; code style-checkers and other 
static code-inspection checkers; and a variety of approaches that directly modify that app code to create 
mock responses from external resources, primarily network accesses. At the extreme end of Code 
Manipulation approaches are cases of modifying the Android distribution itself to enable functionality 
required for testing purposes; it is unlikely that practitioners are going to these lengths. 

4.6.1 Technology Strengths and Limitations 

The scope and variety of Code Manipulation testing approaches is vast. Essentially, anything can be 
implemented, so long as it can be coded. Human capacity to address the problem is the limiting factor, 
not the testing technology. The cost, though, is that some of the knowledge required is deeply technical, 
and people with that knowledge are often in very senior development positions instead of in testing 
positions. 

4.6.2 Implementation Limitations 

More significant limitations on Code Manipulation testing approaches come from the mobile security 
policies on the devices, which significantly restrict inter-application communications relative to desktop 
behaviors. (Amalfitano et al. 2015) notes that every Android app (e.g. an app under test and a test tool 
app) runs under its own user identity rather than sharing the same identity with other applications 
launched by the user of the computer, as is common in traditional desktops. This leads to a need to set 
up the test tool to run in the same process as the app under test, rather than independently of it, which 
demands a tight integration between the tool and the app’s source code (Takala, Katara, and Harty 2011; 
Amalfitano et al. 2012). Different apps can communicate only through the features provided in Android’s 
Binder inter-process communication system (H. van der Merwe, B. van der Merwe, and Visser 2012). 
Binder calls in turn require global JNI8 references (Yan, Yang, and Rountev 2013), and JNI is Android’s 
integration mechanism with C/C++ libraries and code. As a further difficulty, Android’s test automation 
frameworks limit tests to interacting with one Activity9 (Kropp and Morales 2010), meaning that these 
built-in test mechanisms cannot be used to automate tests that flow between Activities – roughly 
equivalent to the different visible pages a user sees while navigating through an app. 

4.6.3 Code Manipulation Technology Summary 

Code Manipulation is an extremely versatile testing technology, capable of testing at all Release-
Readiness Levels, with the caveat that it can grow extremely complicated. xUnit frameworks are in 
widespread use in industry, as are code coverage tools and static analysis style checkers. These are all 
used primarily while code is in Development Focus. In academia (and perhaps in some highly technical 
development shops), code is being modified to provide mock responders for external resource requests, 
primarily network accesses; this is a step towards Simulation Environments. The extreme complexity end 
of Code Manipulation involves researchers creating customized versions of the Android distribution just to 
enable their testing activities; this is technically out of reach of most practitioner shops. 

4.7 System Monitoring 

System monitoring represents all mechanisms for observing and noting device-level system behavior 
while an app is running. 

                                                        
8 Java Native Interface 
9 An Android Activity is approximately the same as one screen view of an app, similar in concept to the 
scope of a webpage. 
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4.7.1 Technology Strengths and Limitations 

System monitoring of the core computing system is a mature and well-developed technology. CPU 
usage, memory usage (RAM), and disk usage are fundamental diagnostics on most computing systems. 
Because computers have been networked together for so long, monitoring of network communication 
interfaces is fairly robust, including wireless signal strength. But monitoring and diagnostic queries of 
other embedded equipment and sensors is less clear; sometimes these hardware components cannot be 
queried via software and require external monitoring devices (e.g. power meters to measure battery 
demand). 

4.7.2 Implementation Limitations 

Very few testing approaches or tools are manipulating device system-state, even though that can have a 
dramatic effect on software behavior. Resource-starved computers can behave oddly and fail in 
unexpected ways. The impacts of misbehaving sensors and other embedded equipment are 
acknowledged but poorly mapped; computing professionals know systems can be affected by these 
things, but the types of impacts are not well-understood. 

4.7.3 Built-in Program Diagnostics 

Similar to how system monitoring inspects and makes visible device-level system behavior, diagnostics 
built into a program inspect and make visible internal program state while software is running. Such 
diagnostics are more like features of the program than they are like Code Manipulations made for testing 
purposes after the features pass out of Development Focus. These built-in diagnostics may take the form 
of logging messages to log files as code execution passes through certain points; assertions and 
exception checking within the code’s logic may be used. In some cases, comprehensive diagnostic 
languages and controls may be built into the software to allow inspection of hundreds of different details 
about the execution of the software as it runs; this was common in testing devices like switchboard 
telephones and laser printers (C. Kaner, pers. comm.) and seems likely to be vital in the testing of IoT 
software. 

4.7.4 System Monitoring Technology Summary 

System Monitoring is primarily applied to core computing elements and network communications, but 
other sensors and embedded equipment are rarely monitored. Built-in software diagnostics features are 
powerful testing tools, but they require extensive Development Focus work to design and implement; they 
provide an entire alternate interface to interacting with the software than the routes used by the ordinary 
traffic handled by the software. 

Because System Monitoring gathers data from a running system, it works in concert with other software 
testing technologies, widening the view of environmental and program state gathered from tests executed 
via other technologies. Monitoring the system with generic monitoring functions (e.g. CPU usage, network 
usage, etc.) increases the Level 2 (Closely Controlled) information available about test execution 
conditions. Programs with extensive built-in diagnostic features can be flexible enough to uncover Level 4 
(Discovers Unexpected) test execution conditions. 

4.8 Mobile Software Testing Technologies Recap 

As a software testing technology, Physical Devices yield highly trustworthy results. Cloud-based providers 
greatly expand access to the thousands of active mobile device types but do so in a server room 
environment that provides little scope for exercising embedded sensors and other equipment in mobile 
devices. No robust system for testing embedded components at scale is apparent. Cloud-based testing 
options are limited to what the frameworks supported by that service support, and customized testing 
options are quite rare. 
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Virtual Devices effectively support Development Focus activities, but all mobile virtual devices lack 
completeness because significant hardware components are routinely omitted; Virtual Device technology 
alone is not capable of exercising sensors and other embedded equipment. Although pre-mobile 
expectations lead computing professionals to expect high-fidelity behavior from virtual devices labeled as 
“emulators”, the Android Emulator only represents an idealized runtime environment because it cannot 
know about the proprietary customizations of the Android OS made by hardware manufacturers and cell 
service providers. 

Simulation Environments contain rich potential to exercise all the embedded equipment in mobile devices, 
but they are complex and do not seem to be available to practitioners. 

The Visual GUI Tree offers direct access to the GUI objects users use, but historically fails to handle 
custom objects or objects which match a general pattern but vary in details (like error messages). It also 
does not handle variable GUI elements that are conditionally present based on runtime details, may 
appear in different places within a data set (like a list), and do not naturally contain uniquely identifying 
attributes. Visual GUI Tree technology alone is not capable of exercising sensors and other embedded 
equipment. 

Image Comparison technology – especially part-image comparisons powered by computer vision 
technology – filled a significant gap in automated GUI testing, enabling the testing of Visual Meaning 
problems. It runs more slowly than tests via the Visual GUI Tree, cannot address GUI elements not fully 
visible at the expected time, and currently does not handle basic display variations well. Changes in size, 
color, or style confuse the current tools, which also struggle with moving image content and with 
accurately reading text on-screen. Image Comparison technology alone is not capable of exercising 
sensors and other embedded equipment. 

Code Manipulation approaches can do anything software can do, but they rapidly grow quite complicated 
to create. Tools that propagate to industry typically encapsulate a small set of behaviors. The widespread 
use of xUnit frameworks, code coverage tools, and style checkers shows that well-packaged behaviors 
will be extensively used by practitioners. Some mobile mocking tools exist for testing requests of external 
resources, but these are primarily limited to network access. 

System Monitoring is robust for watching core computing elements and network communications but is 
not commonly used for checking sensors, other embedded equipment, or internal program state. 
Although this technology may be applied during Development Focus to isolate issues, very few Testing 
Focus tools or automation approaches incorporate system-state conditions to test mobile apps. 

Overall, the great variety of environmental unpredictability faced by mobile and IoT apps is poorly 
addressed because five of these seven technologies do not handle testing input from embedded sensors 
and equipment at scale. Most of the existing testing tools and research efforts function at Level 1 (Ready 
to Test) or Level 2 (Closely Controlled). Yet the remaining levels are where the capacity to truly address 
widespread environmental unpredictability – the hallmark condition of mobile and IoT computing – 
becomes viable. Simulation Environments and Code Manipulation technologies can do this, but at the 
cost of high complexity. 

In practice, cloud-based access to physical devices is somewhat mitigating the paucity of tools that can 
be used at Level 3 (Predictable Variations), Level 4 (Discovers Unexpected), and Level 5 (Exhausted 
Capacities), but these cloud services exercise only the device environment variable, not the embedded 
sensors and equipment of mobile devices. 

5 Vision of a New Generation of Software Testing Tools 
The high-level review of computing history in Section 2 established that mobile and IoT computing are 
operating within a fundamentally different scale and scope of environmental unpredictability than 
programs in any prior computing era. 
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The Release-Readiness Levels discussion in Section 3 clarified that mobile and IoT software need to be 
tested at Levels 3 (Predictable Variations) and Level 4 (Discovers Unexpected) to adequately assess 
likely field behavior within this vast environmental unpredictability. Some specific behaviors and some 
whole software systems need to be tested at Level 5 (Exhausted Capacities) because of their inherent life 
and safety impact or their core data integrity impact. 

Touring the seven core testing technologies in Section 4 showed that most existing tools and research 
efforts function at Level 1 (Ready to Test) or Level 2 (Closely Controlled), with a very few stretching partly 
into Level 3 (Predictable Variations). Only two software technologies provide means for exercising the 
functionality related to embedded sensors and equipment – Simulation Environments and Code 
Manipulation. Unfortunately, these two technologies quickly become very complex to apply, so their reach 
into the general practitioner testing population is limited. 

What most practitioners need to perform more effective mobile and IoT software testing are new tools that 
directly address the gaps not covered by the existing array of tools. 

5.1 Requirements for Next Generation Testing Tools 

Therefore, to improve automated testing of mobile and IoT software, new approaches are required that 
meet the following requirements: 

• Requirement 1: Directly target functionality dealing with embedded sensors and equipment. 
• Requirement 2: Scale easily to vast variations in data readings, data fidelity, data delivery 

methods, etc. 
• Requirement 3: Constrain technological complexity to be within reach of non-specialists. 

Because Simulation Environments and Code Manipulation technologies satisfy Requirements 1 and 2, 
initial steps to produce new software testing tools are likely to be technically complex and to require 
programming skills to apply them. 

However, even these tools need to be within reach of non-specialists. In my dissertation work, attempting 
to build a tiny tool of this new generation, I encountered the need to be proficient in hardware device 
driver implementation, Linux kernel programming, cross-language programming and compilation, 
graphics subsystem implementation at the OS level, analyzing and fixing complex build dependencies, 
and navigating and deciphering very large codebases. That is a broad and deep set of technical skills, 
rare among senior developers and rarer amongst software testers. That skill set is more likely to be 
satisfied by a team of senior developers and build mavens than by one individual. 

Therefore, when I use “non-specialists” in Requirement 3, I mean: Experienced software testers with 
competent, generalist programming skills but without special technical expertise in any of the subsystems 
comprising mobile or IoT computing environments and without special technical expertise in the 
mathematical modelling commonly associated with simulation efforts. 

Once several new tools and software testing technologies have been developed to sufficient maturity, it 
will become possible to package some of those features into much more generally-accessible tools, as 
has already happened with code coverage tools and style checkers. 

5.2 One Vision of New Types of Tools 

Extremely briefly, my vision for a new testing technology addressing these requirements combines 
integration testing and compiler knowledge. Integration testing combines multiple individual units of 
functionality into features of varying sizes and scopes without involving the application as a whole. Inside 
the program, data flow for these features begins in specific places and ends in other specific places. 
Interfaces written for mobile and IoT software communicate with these beginning and ending points, and 
the compiler knows how to connect these interfaces to the objects in the program’s code that do the work 
– it has to know this information to successfully build a deployable application. 
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I envision testing environments that help testers interact with arbitrary paths through the source code by 
exposing these data-flow beginning and ending points and allowing testers to specify the data details 
inserted at the data-flow beginning points, as well as any other critical program state. Tests would then 
conclude after the actual source code processes the data, and the results of that processing would be 
read at the data-flow ending points. Such compiler-assisted testing tools would allow testers to perform 
rich Simulation Environment testing on custom slices of functionality, without requiring fully-featured 
reality-based environments and without requiring testers to understand all the underlying code – just the 
intent of the feature and how to manipulate data at the endpoints. 

6 Conclusion 
Mobile and IoT computing operate within a fundamentally different scale and scope of environmental 
unpredictability than programs in prior computing eras. Accurately assessing the field performance of 
software for such devices requires testing at Level 3 (Predictable Variations), Level 4 (Discovers 
Unexpected), and Level 5 (Exhausted Capacities) – yet most existing tools and research function at Level 
1 (Ready to Test) or Level 2 (Closely Controlled), with very few stretching partly into Level 3 (Predictable 
Variations). This is not good enough. 

Mobile and IoT computing need better software testing tools, ones that directly handle vast environmental 
unpredictability and operate easily at great scale. I have one vision for a possible new direction for tool 
development, but this is a large and complex problem. It needs the skills and experience of many minds 
brought to bear upon it. What types of tools can you imagine that would be useful to the field? 
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