
Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 1 of 61 July 4th‐‐2018

Foundation Level Specialist

CTFL® Automotive Software Tester
(CTFL®-AuT)

Syllabus

Version 2018 (2.0.2) dated July 4th--2018

International Software Testing Qualifications Board

Copyright Notice

This document may be copied in its entirety, or extracts made,

if the source is acknowledged.

Copyright © International Software Testing Qualifications Board (hereinafter called ISTQB®).

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 2 of 61 July 4th‐‐2018

Copyright © 2017, German Testing Board e.V. (GTB)

The authors and the German Testing Board have agreed to the following terms of use:

 Every individual and training provider may use the syllabus as a basis for training if the copyright
owners are acknowledged and mentioned as the source and owners of the copyright.
Furthermore, the syllabus may be used for marketing purposes only after accreditation by the
ISTQB® member board.

 Every individual or group of individuals may use the syllabus as a basis for articles, books or
other derived publications if the authors and the German Testing Board are mentioned as the
source and the owners of the copyright.

 The work including all its parts is copyright-protected. The use is – if it is not explicitly allowed
by the German copyright law (UrhG) – only permitted upon the approval of the entitled persons.
This applies specifically to copies, adaptations, translations, microfilming, saving and
processing in electronic systems, making available in public.

Registered Trademarks

 CTFL® is a registered trademark of the German Testing Board (GTB) e.V. in EU only.
 GTB® is a registered trademark of the German Testing Board (GTB) e.V. in EU only.
 ISTQB® is a registered trademark of the International Software Testing Qualifications Board
 Automotive SPICE® is a registered trademark of the German Association of the Automotive

Industry (VDA)

Notice of Disclaimer & Limitation of Liability

No representation or warranty is made that the information is technically accurate or sufficient or
conforms to any statute, governmental rule or regulation, and further, no representation or warranty is
made of merchantability or fitness for any particular purpose or against infringement of intellectual
property rights. In no event shall ISTQB® or GTB® be liable for lost profits or other incidental or
consequential damages. ISTQB® and GTB expressly advise any and all use of or reliance upon this
information provided in this document is at the risk of the user. No recommendation as to products or
vendors is made or should be implied.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 3 of 61 July 4th‐‐2018

Overview of changes

Version Date: Note

1.0 19.01.2011 Author: Dr. Hendrik Dettmering, developed upon request of
gasq GmbH

The copyright was fully transferred to German Testing Board
e.V.

1.1 14.06.2015 Review of content and comparison to the German ISTQB®
Certified Tester Foundation Level syllabus 2011 V1.0.1 and the
ISTQB® Glossary V2.2

Release per GTB working group meeting of 15.03.2015
(Munich).

2.0 31.03.2017 Learning objectives and content on the basis of V.1.1.

Release of the (corresponding german) edition per GTB WG
meeting of 31.03.2017 (Frankfurt a. M.).

2.0.1 (English Edition) 30.06.2017 Only minor changes in the key terms; Rework according the
findings (mainly wording) from international reviewers after 1st
internal alpha review in March 2017 (see acknowledgement).
Corresponding English References inserted (see references)

2.0.1 (English Edition) 13.08.2017 Fine tuning of the terms after discussion with ISTQB® WG
Glossary; Rework according the findings (mainly wording) from
international reviewers after 2nd internal alpha review in July
2017 (see acknowledgement).

2.0.1 (English Edition) 20.08.2017 Fine tuning of the term after another discussion with ISTQB®
WG Glossary; findings from late Reviewer integrated;

2.0.1 (English Edition) 15.09.2017 Findings from Reviewer by GTB working group meeting
(Munich) integrated.

2.0.1 (English Edition) 16.09.2017 Rework of Chapter 3.2.2

2.0.1 (English Edition) 22.09.2017 Final Edits for GA BETA DRAFT Edition

2.0.2 (English Edition) 28.05.2018 Final Edits from BETA Review and for GA Release

2.0.2 (English Edition) 04.07.2018 Watermark removed and trademark restriction added
after GA approval and for ISTQB® publication

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 4 of 61 July 4th‐‐2018

Table of contents

Overview of changes ... 3

Acknowledgement ... 6

History of this document .. 7

Introduction .. 8

Purpose of the document ... 8

ISTQB® CTFL®-Specialist: Automotive Software Tester .. 8

Business Value ... 9

Learning objectives/Cognitive levels of knowledge .. 9

Terms ... 9

The exam .. 9

Accreditation ... 10

Level of detail ... 10

Structure of the syllabus ... 11

Gender neutral wording .. 11

1 Introduction (K2) [30 Min] ... 12

1.1 Requirements from divergent project objectives and increasing product complexity (K2)
[15 Min] ... 12

1.2 Project aspects influenced by standards (K1) [5 Min] .. 13

1.3 The six generic phases in the system lifecycle (K1) [5 Min] ... 13

1.4 The contribution/participation of the tester in the release process (K1) [5 Min] 14

2 Standards for the testing of E/E systems (K3) [300 Min] ... 15

2.1 Automotive SPICE (ASPICE) (K3) [140 Min].. 16

2.1.1 Design and structure of the standard (K2) [25 Min] ...16

2.1.2 Requirements of the standard (K3) [115 Min] ..18

2.2 ISO 26262 (K3) [125 Min] ... 21

2.2.1 Functional safety and safety culture (K2) [20 Min] ...21

2.2.2 Integration of the tester in the safety lifecyle (K2) [15 min] ..21

2.2.3 Structure and test specific parts of the standard (K1) [10 Min] ..23

2.2.4 The influence of criticality on the extent of the test (K2) [20 Min]24

2.2.5 Application of content from CTFL® in the context of ISO 26262 (K3) [60 Min]24

2.3 AUTOSAR (K1) [15 Min] ... 26

2.3.1 Objectives of AUTOSAR (K1) [5 Min] ..26

2.3.2 General structure of AUTOSAR (K1) [informative] [5 Min] ..26

2.3.3 Influence of AUTOSAR on the work of the tester (K1) [5 Min] ..27

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 5 of 61 July 4th‐‐2018

2.4 Comparison (K2) [20 Min] ... 28

2.4.1 Objectives of ASPICE and ISO 26262 (K1) [5 Min] ...28

2.4.2 Comparison of the test levels (K2) [15 Min] ...28

3 Testing in a virtual environment (K3) [160 Min] .. 30

3.1 Test environment in general (K2) [30 Min] ... 30

3.1.1 Motivation for a test environment in the automotive development (K1) [5 Min]30

3.1.2 General parts of a test environment (K1) [5 Min] ...31

3.1.3 Differences between Closed-Loop and Open-Loop (K2) [15 Min]31

3.1.4 Essential interfaces, databases and communication protocols of a electronic control unit
(K1) [5 Min] ...32

3.2 Testing in XiL test environments (K3) [130 Min] .. 33

3.2.1 Model in the Loop (MiL) (K2) [20 Min] ...33

3.2.2 Software in the Loop (SiL) (K1) [10 Min] ..34

3.2.3 Hardware in the Loop (HiL) (K2) [20 Min] ..34

3.2.4 Comparison of the XiL test environments (K3) [80 Min] ..35

4 Automotive-specific static and dynamic test techniques [230 Min] .. 38

4.1 Static test techniques (K3) [75 Min] .. 38

4.1.1 The MISRA-C: 2012 Guidelines (K2) [15 Min] ...38

4.1.2 Quality characteristics for reviews of requirements (K3) [60 Min]39

4.2 Dynamic test techniques (K3) [155 Min] ... 40

4.2.1 Condition testing, multiple condition testing, modified condition/decision testing (K3)
[60 Min] ..40

Decision outcome for the expression: ... 40

4.2.2 Back-to-Back-Testing (K2) [15 Min] ...41

4.2.3 Fault injection testing (K2) [15 Min]..41

4.2.4 Requirements-based testing (K1) [5 Min] ..42

4.2.5 Context-dependent selection of test techniques (K3) [60 Min] ..42

Annex ... 44

List of tables ... 45

References ... 45

Definitions ... 50

Abbreviations .. 58

Index ... 60

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 6 of 61 July 4th‐‐2018

Acknowledgement

The German Testing Board (GTB), would like to thank the author and review team of the German version
2017, V2.0 (in alphabetical order):

Graham Bath, André Baumann, Arne Becher, Ralf Bongard (Lead Syllabus and Co-Chair WG), Kai
Borgeest, Tim Burdach, Mirko Conrad, Klaudia Dussa-Zieger, Matthias Friedrich, Dirk Gebrath,
Thorsten Geiselhart, Matthias Hamburg, Uwe Hehn, Olaf Janßen, Jacques Kamga, Horst Pohlmann
(Lead Exam and Chair WG), Ralf Reißing, Karsten Richter, Ina Schieferdecker, Alexander Schulz,
Stefan Stefan, Stephanie Ulrich, Jork Warnecke and Stephan Weißleder.

The German Testing Board (GTB) and the WG Automotive Software Tester would like to thank the
extended review team of the English Versions 2018 (V.2.0.x): Graham Bath, Thomas Borchsenius,
Ádám Bíró, Zsolt Csatári, Attila Farkas, Attila Fekete , Ferenc Hamori, Ádám Jezsoviczki, Gábor Kapros,
Miguel Mancilla, Roland Milos, Kenji Onishii, Miroslaw Panek, Mirosław Panek, Barthomiej Predki,
Stefan Stefan, Stuart Reid, Ralf Reissing, Hidetoshi Suhara, Tamás Széplakin, Eshraka Zakaria and
Csaba Zelei.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 7 of 61 July 4th‐‐2018

History of this document

The syllabus 1.0 was developed by Dr. Hendrik Dettmering in 2010/2011 upon request from the Global
Association for Software Quality AISBL (gasq).

For the review of the document selected experts from OEMs were appointed, by whom the quality and
the objective of the syllabus were checked and assessed as being suitable. Therefore, this document
constitutes the syllabus for the certification of the automotive software tester and is at the same time the
basis for training material as well as for the exam questions for the certification.

Beginning on January 1st, 2014, the working group “Certified Automotive Software Tester” of the German
Testing Board (GTB) took over further development of the syllabus to allow the rapid development of
the topic and to meet the industry requirement to not only have the industry independent CORE syllabus,
but also the automotive specific aspects available as an specialist to the well-established ISTQB®
Foundation Level.

The version 1.1 was released on June 15th, 2015. The edition was downward compatible with version
1.0; the redundant parts accordingly ISTQB® Foundation Level syllabus was removed from Version 1.1.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 8 of 61 July 4th‐‐2018

Introduction1

Purpose of the document

This syllabus defines a specialist to the Foundation Level of the software test training programs of the
International Software Testing Qualifications Board (in the following short ISTQB®). With the help of the
syllabus at hand training providers create their course material and define a suitable teaching
methodology for the accreditation. The trainees prepare for the exam with the help of the syllabus.

Further information about the history and background of the syllabus at hand can be found in the history
of this syllabus.

ISTQB® CTFL®-Specialist: Automotive Software Tester

The present Specialist module to the Foundation Level of the Certified Tester training programs is
directed at all persons involved in the topic of software testing in the automotive area. This includes
persons in roles like testers, test analysts, test engineers, test consultants, test managers, release
testers and software developers. The basic level also addresses persons in the roles of project manager,
quality manager, software development manager, system analyst (business analysts), IT manager or
management consultants, who wish to acquire basic knowledge and basic understanding of the topic
software testing in the automotive area.

1 Major parts of the text were taken from the ISTQB® CTFL Core syllabus [21]

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 9 of 61 July 4th‐‐2018

Business Value

In this paragraph, we will outline the business value (Business Outcomes per ISTQB®) that one can
expect from a candidate with an additional certification as CTFL® Automotive Software Tester.

An CTFL® Automotive Software Tester (CTFL®-AuT) can …

AUTFL‐BO‐01 Collaborate effectively in a test team. („collaborate“)

AUTFL‐BO‐02 Adapt the test techniques known from the ISTQB® Certified Tester Foundation
level (CTFL®) to the specific project requirements. („adapt“)

AUTFL‐BO‐03 Consider the basic requirements of the relevant standards (Automotive SPICE®,
ISO 26262, etc.) for the selection of suitable test techniques. („select“)

AUTFL‐BO‐04 Support the test team in the risk oriented planning of the test activities and apply
known elements of structuring and prioritization. („support & apply“)

AUTFL‐BO‐05 Apply the virtual test methods (e.g. HiL, SiL, MiL, etc.) in test environments. („apply“)

Learning objectives/Cognitive levels of knowledge

Each paragraph of this syllabus is assigned to a cognitive level:

 K1: remember
 K2: understand
 K3: apply
 K4: analyse

The learning objectives define what the trainee should have learned after finishing the corresponding
paragraph/chapter/module.

The content of learning objectives marked as [informative] are to be taught by the training provider within
a suitable timeframe, however, they are NOT relevant for the exam.

Example: AUTFL‐2.2.3.1 Recall design and structure of ISO 26262. [informative]

Terms

The trainee should be able to reproduce all terms mentioned in the paragraph directly underneath the
headline “Terms” (K1), even if it is not explicitly mentioned in the learning objectives. The definitions of
the ISTQB® Glossary and the national translations in the approved versions (incl. the additional terms
from the present syllabus) apply.

The exam

Based on this syllabus there is an additional exam for the domain specific certificate Foundation Level
Specialist Automotive Software Tester. An exam question can ask for subject matters from several
chapters of the syllabus. Generally, each exam question is assigned to one learning objective, except
for those questions that are assigned to a key term. The format of the exam is Multiple Choice. Exams

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 10 of 61 July 4th‐‐2018

can be taken directly after an accredited training course or independently (e.g. in an exam centre or as
a publicly available exam). Taking part in a course is not a requirement for taking the exam.

Requirements for taking the exam

To take the exam for a Certified Automotive Software Tester candidates must have the ISTQB®
Certified Tester Foundation Level (CTFL®) certificate and interest in testing in automotive development
projects.

However, it is recommended that the candidate

 has at least a minimum background knowledge in software development or software testing (for
example six months’ experience as a system or acceptance tester or as a developer)

 or has taken a course, which is accredited per the ISTQB® standard (by an ISTQB®-member-
board) and/or

 has gained initial experience in the testing in E/E development projects in the Automotive
industry.

Accreditation

An ISTQB® Member Board may accredit training providers whose course material follows this syllabus.
Training providers should obtain accreditation guidelines from the board or body that performs the
accreditation. An accredited course is acknowledged to conform to this syllabus and may include an
additional exam as a separate part.

Further references for training providers can be found in the annex.

Level of detail

The level of detail allows consistent training and examination. To reach this goal, this syllabus contains
the following:

 general learning objectives, which describe the intention of the (extended) basic level
 content that must be studied, including a description and, if necessary, references to further

literature
 learning objectives for each area of knowledge, which describe the objective cognitive result of

the training and the mindset of the participant that is to be achieved
 a list of terms that the participant should be able to reproduce and understand
 a description of the important concepts to be studied, including sources such as well-

established technical literature, standards

The syllabus is not a complete description of the field of knowledge “Testing for software oriented
systems in automotive electronic development projects”. It simply reflects the necessary scope and level
of detail that is relevant for the learning objectives.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 11 of 61 July 4th‐‐2018

Structure of the syllabus

The syllabus consists of four main chapters. Each main headline of a chapter shows the most
challenging category of learning objectives/highest cognitive level, which is to be covered by the
respective chapter and defines the training time, which is to be considered as a minimum for this chapter
in an accredited course.

Example:

Introduction (K2) - [30 minutes]

The example shows that for chapter “Introduction (K2)” K13 and K2 are expected (but not K3) and 30
minutes are planned for the training of the material of this chapter.

Each chapter contains several sub-chapters. Each sub-chapter can also define learning objectives and
a timeframe. If no time is given for a sub-chapter, it is already included in the main chapter.

Gender neutral wording

For reasons of simplifying the readability we will abstain from gender neutral differentiation, e.g. male
and female users. Following an approach of equality, all role names are generally to be valid for both
genders.

3 A learning objective of a higher level of taxonomy implies the learning objectives of the lower levels.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 12 of 61 July 4th‐‐2018

1 Introduction (K2) [30 Min]

Terms

No testing specific terms

Learning objectives

AUTFL-1.1.1 Explain and give examples of the challenges of automotive product development that
arise from divergent project objectives and increasing product complexity (K2)

AUTFL-1.2.1 Recall project aspects that are influenced by standards such as time, cost, quality and
project/product risks. (K1)

AUTFL-1.3.1 Recall the six generic phases in the system lifecycle per ISO/IEC 24748-1 [1]. (K1)

AUTFL-1.4.1 Recall the contribution and the collaboration of the tester in the release process. (K1)

Introduction

One of the seven principles of software testing is “Testing is context dependent” [21]. This paragraph
outlines the environment of E/E development, which an “Automotive Software Tester”4 is acting in. On
the one hand, divergent objectives, increasing complexity and high pressure for innovation lead to
special challenges. On the other hand, standards and the lifecycle of vehicles form the framework,
which the tester is working in. In the end, the tester is contributing with his work to the release of software
and systems.

1.1 Requirements from divergent project objectives and increasing
product complexity (K2) [15 Min]

Car makers and suppliers keep launching new car models5 more frequently as in the past and under
increasing cost pressure. The following aspects influence this process:

 Increasing number of models & complexity:
To be able to better meet individual end customer needs, OEMs (Car producers) offer more and
more car models. However, this reduces the quantities per model. To cover the resulting
increases in development and production costs, producers develop several models as varieties
of a common platform. The development of a platform, however, is far more complex than the
development of a single model because of the need to keep control over the many possible
variations.

 Increasing range of functionality:
The end customer requests more and more innovations without omitting existing functions,
which causes the range of functions to increase.

 Increasing number of configurations:
The end customer wants to adjust his car model to his individual wishes. This requires many
possible configurations for one car model, also in the range of functionality.

4 In the following we will only use the term „Tester”. It is to be understood as the short form of “Automotive E/E Software Tester”
5 Example from a study by the management consultancy Progenium: “In 1990, only 101 different car models were on offer …, in

2014, this number had increased to 453” [43]

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 13 of 61 July 4th‐‐2018

 Increased quality requirements:
Despite increasing levels of functionality and complexity, the end customer expects at least the
same or even a higher quality of the vehicle and its functions.

As the project objectives time, cost and quality are competing („Project management triangle”) car
makers (OEMs) and suppliers must strive for a more efficient system development, which allows for
shorter development times despite increasing complexity, increasing quality requirements and smaller
budgets.

1.2 Project aspects influenced by standards (K1) [5 Min]

Standards have an influence on major project aspects such as time, cost, quality, project and product
risks:

 Standards increase the efficiency of processes (e.g. to reduce the development time or cost at a
stable quality) by:

o uniform naming
o better transparency
o easier collaboration (internal and external)
o increased re-usability
o consolidated experience („Best Practice“)

 With well-established technology guidelines [21], they help to discover risks and defects early
and to resolve them.

 Standards are the basis for audits. Therefore, an auditor can assess the quality of a product or
process. At the same time, the auditor can check if they meet the requirements [1].

 Standards are part of the contractual or regulatory provisions and guidelines.

 This syllabus will, among others, look at the following standards:

 standards, such as ISO 26262 [3] or Automotive SPICE(ASPICE) [2], which standardise
processes and methods.

 standards , such as AUTOSAR [3], which standardise products.

1.3 The six generic phases in the system lifecycle (K1) [5 Min]

The system lifecycle of a car and all included components6 begins with the product idea and ends with
decommissioning. Throughout this lifecycle development processes, business processes, logistic
processes and processes regarding the production technology are involved. Milestones with previously
defined entry and exit criteria help to achieve mature processes. These separate and synchronise the
system lifecycle7 into the following six phases [1]. (typical test activities8 in parentheses):

 concept (test planning)
 development (test analysis, design, implementation, execution, evaluation and report)
 production (end of line test)
 utilization (no test activities)
 support (maintenance test)

6 Electronic control units (hardware and software) as well as components.
7 The Safety lifecycle of the ISO 26262 runs through similar phases.
8 Test activities see also: fundamental test process [2].

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 14 of 61 July 4th‐‐2018

 retirement (migration test)

The automotive industry popular product development process outlines: conception, development
and production.

1.4 The contribution/participation of the tester in the release process
(K1) [5 Min]

In the automotive environment, a project reaches a milestone by declaring a release and after seeing
the evidences decides that the goals are reached. From this moment on, the release item meets the
level of maturity needed for its use and purpose.

The release process is expected to lead to the release of the release item. The release item consists of
the test item (software configuration including parameterization, if necessary also with hardware and
mechanics) and the additional supporting documentation.

The tester delivers important information for the release process via the final test report [3]:

 tested items and performance characteristics including their version
 known defects
 product metrics
 information for release recommendation (when achieving the test exit criteria) based on the

release regulation e.g. provided by a Best Practice Guideline (i.e.: test on closed terrain or
public streets, installation recommendation)

Additionally, the tester participates in creating further deliverable results relevant for the release [4]:

 prioritize and participate in the decision regarding changes.
 prioritize features (for the order of implementation).

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 15 of 61 July 4th‐‐2018

2 Standards for the testing of E/E systems (K3) [300 Min]

Terms

Automotive SPICE (ASPICE)

Automotive SPICE (ASPICE), software qualification test (ASPICE), system qualification test (ASPICE)

ISO 26262

Automotive Safety Integrity Level (ASIL), functional safety, method table (ISO 26262),

AUTOSAR

No testing specific terms

Comparison

No testing specific terms

Learning objectives

Automotive SPICE (ASPICE)

AUTFL-2.1.1.1 Recall the two dimensions of Automotive SPICE (ASPICE). (K1)

AUTFL-2.1.1.2 Recall the 3 process categories and 8 process groups of ASPICE [informative]. (K1)

AUTFL-2.1.1.3 Explain the Capability levels 0 to 3 of ASPICE. (K2)

AUTFL-2.1.2.1 Recall the purpose of the 5 test relevant processes of ASPICE. (K1)

AUTFL-2.1.2.2 Explain the meaning of the four rating levels and the capability indicators of ASPICE
from the testing perspective. (K2)

AUTFL-2.1.2.3 Explain the requirements of ASPICE for the test strategy including the regression test
strategy. (K2)

AUTFL-2.1.2.4 Recall the requirements of ASPICE for the test documentation. (K1)

AUTFL-2.1.2.5 Design a verification strategy (in contrast to a test strategy) and criteria for unit
verification. (K3)

AUTFL-2.1.2.6 Explain the different traceability requirements of ASPICE from the testing perspective.
(K2)

ISO 26262

AUTFL-2.2.1.1 Explain the objective of functional safety for E/E systems. (K2)

AUTFL-2.2.1.2 Recall testers’ contribution for the safety culture. (K1)

AUTFL-2.2.2.1 Present the role of the tester in the framework of the safety lifecycle per ISO 26262.
(K2)

AUTFL-2.2.3.1 Recall the design and structure of ISO 26262. [informative]9

9 Not mandatory for exams

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 16 of 61 July 4th‐‐2018

AUTFL-2.2.3.2 Recall the name of volumes (part titles) of ISO 26262 that are relevant to the tester.
(K1)

AUTFL-2.2.4.1 Recall the criticality levels of ASIL. (K1)

AUTFL-2.2.4.2 Explain the influence of ASIL on applicable test design techniques and test types for
static and dynamic tests and the resulting test extent. (K2)

AUTFL-2.2.5 To be able to interpret the method tables of the ISO 26262. (K3)

AUTOSAR

AUTFL-2.3.1 Recall the objectives of AUTOSAR. (K1)

AUTFL-2.3.2 Recall the general design of AUTOSAR [informative]10. (K1)

AUTFL-2.3.3 Recall the influence of AUTOSAR on the work of the tester. (K1)

Comparison

AUTFL-2.4.1 Recall the different objectives of ASPICE and ISO 26262 (K1).

AUTFL-2.4.2 Explain the differences between ASPICE and ISO 26262 and CTFL® regarding the
test levels (K2).

2.1 Automotive SPICE (ASPICE) (K3) [140 Min]

Introduction

Process improvement follows the approach that the quality of a system depends on the quality of the
development process. Process models in this case offer an option for improvements by measuring the
process capability of an organization compared to the model. Furthermore, the model serves as the
framework for the improvement of the processes of an organization using the assessment results [5].

From 2001 on, the SPICE11 User Group and the AUTOSIG (Automotive Special Interest Group)
developed Automotive SPICE (ASPICE). Since its publication in 2005, the standard has been well
established in the automotive industry.

In July 2015, the German Association of the Automotive Industry (VDA) released ASPICE Version 3.0
[9]. From 2017 on the improved version V.3.1. of ASPICE 3.1 will replace [6] the established Version
2.5 [2]. All statements made in this paragraph therefore refer to Version 3.1 of ASPICE[47].

2.1.1 Design and structure of the standard (K2) [25 Min]

2.1.1.1 The two dimensions of ASPICE

ASPICE defines an assessment model with two dimensions:

In the process dimension, ASPICE defines the Process Reference model. These serve as a reference
to compare the organisations processes against so that they can be assessed and improved. For each
process, ASPICE defines the purpose and the results as well as the required actions (base practices)

10 Not mandatory for exams.
11 Acronym for „Software Process Improvement and Capability Determination“

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 17 of 61 July 4th‐‐2018

and work results (work products). If an organization needs further reference processes beyond ASPICE,
these can be taken e.g. from ISO/IEC 12207 [10] or ISO/IEC 15288 [11].

In the capability dimension ASPICE defines a number of process attributes. These provide the
measurable features of the process capability. For each process, there are process-specific as well as
generic attributes. ISO/IEC 33020 serves as a basis for the assessment of the process capability [39].

With the help of this model it is possible to assess the processes (process dimension) regarding their
capability (capability dimension).

2.1.1.2 Process categories in the process dimension

ASPICE groups the processes into 8 process groups then the process groups into 3 process categories
[9][47]:

The primary processes include all processes that serve as key processes of the company:

 Acquisition (ACQ) of products and/or services
 Supply (SPL) of products and/or services
 System engineering (SYS)
 Software engineering (SWE)

The supporting processes include all processes that support other processes:

 Supporting processes (SUP)

The organizational processes include all processes that support the company objectives:

 Management (MAN) of a project or process
 Process improvement (PIM)
 Reuse (REU) of systems and components

For the tester, the process groups system development (SYS) and software development (SWE) are of
special interest. These build the processes of the Automotive SPICE V-model ([9] Annex D “Key
Concepts”).

2.1.1.3 Capability levels in the capability dimension

The assessor assesses the process capability with the help of a six-level assessment system (display
of levels). ASPICE defines the capability levels 0 to 312 as follows [9][47]:

 Level 0 (incomplete process): The process does not exist or does not achieve the purpose of
the process. Example: The tester only checks a minor part of the requirements.

 Level 1 (performed process): The implemented process achieves its process purpose (but
maybe executed inconsistently). Example: There is no complete planning visible for the test
process. However, the tester can show the level of fulfilment of the requirements.

 Level 2 (managed process): The project plans and supervises the process in its execution.
Under certain circumstances, it adapts the course of action during execution to meet the
objective. The requirements for the work products are defined. A project member checks the
work products and approves them. Example: The test manager defines the test objectives, plans
the test activities and supervises the process. In case of deviations, he reacts accordingly.

12 The capability level 4 and 5 are currently not in the focus of the automotive industry.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 18 of 61 July 4th‐‐2018

 Level 3 (established process): The project uses a standardized process, and findings are used
to constantly improve. Example: There is a general test strategy for the whole organization.
After the test completion (see fundamental test process) the test manager helps to further
develop it.

2.1.2 Requirements of the standard (K3) [115 Min]

2.1.2.1 Test specific processes

ASPICE defines test processes according to all processes of the software and system development
[8]:

 The process software unit verification (SWE.4) requires static and dynamic testing. It
assesses the components of the software based on its detailed design (SWE.3).

 The software integration test (SWE.5) assesses the integrated software based on the software
architecture (SWE.2).

 The software qualification test (SWE.6) assesses the integrated software based on the
software requirements (SWE.1).

 The system integration test (SYS.4) assesses the integrated system based on the system
architecture (SYS.3).

 The system qualification test (SYS.5) assesses the integrated system based on the system
requirements (SYS.2).

2.1.2.2 Assessment levels and capability indicators

An assessor can assess the process capability via capability indicators. ASPICE defines them for 9
process attributes (PA). For the capability levels 1 to 3, they are defined as follows (using the example
of SWE.6 in parentheses) [9], [47]:

 PA 1.1: Process performance (the tester orients him-/herself by means of the fundamental test
process).

 PA 2.1: Performance management (the tester plans, supervises and controls the test activities
among other things).

 PA 2.2: Work product management (the tester checks the quality of the test documentation
among other things).

 PA 3.1: Process definition (the person responsible for the test process defines a general
project strategy among other things).

 PA 3.2: Process deployment (the tester applies the test strategy defined in PA 3.1).

For the process execution (PA 1.1) ASPICE defines two types of indicators: base practices (BP) and
work products (WP). In addition generic practices (GP) and resources are defined. The assessment of
the process attributes is based on the implementation level of the indicators in four rating levels [9], [47]:

 N (None): not fulfilled (0% up to ≤ 15%)

 P (Partly): partly fulfilled (> 15% up to ≤ 50%)
 L (Largely): largely fulfilled (> 50% up to ≤ 85%)
 F (Fully): fully fulfilled (> 85% up to ≤ 100%)

For a process to reach a certain capability level, the indicators of the capability level to be achieved must
be “largely fulfilled (L)”. The indicators of the lower capability levels must be “fully fulfilled (F)”.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 19 of 61 July 4th‐‐2018

2.1.2.3 Test strategy and regression test strategy

As a base practice, ASPICE requires a test strategy13 for each test specific process (see 2.1.2.1). The
test manager develops this within the test planning. Test guidelines, project objectives as well as
contractual and regulatory requirements build the basis for this.

The tester knows early testing as a principle of testing. This also applies to the testing of software in the
automotive environment. However, another aspect comes into play here because test environments at
higher test levels are significantly more expensive. For example, for the testing at higher levels,
especially developed and embedded hardware is necessary (e.g. as a prototype or unique model). The
test strategy defines the level-specific test environments, but also which tests the tester is required to
perform in which test environments.

The regression test strategy is an essential part of the test strategy. The challenge here lies in the
economically sensible choice of the test cases (“added value of testing”). The regression strategy
defines the objective and the technique for the choice of the regression tests. For example, the choice
can be risk-based. An impact analysis helps to identify the areas the tester must focus on with regression
tests. However, the test manager may also ask the tester to repeat all automated test cases for each
release.

2.1.2.4 Test documentation in ASPICE

For the documentation of the test activities, ASPICE requires many work products (WP) that are known
to the tester from CTFL® [9]:

 WP 08-50: Test specification (containing test design, test case and test procedure
specification)

 WP 08-52: Test plan according to ISO/IEC/IEEE 29119-3 [34] and included strategy (WP 19-
00)

 WP 13-50: Test result, test log, incident/deviation report and test summary report

For each work product, ASPICE defines examples of characteristics and content. An assessor can
evaluate those by spot checking. For an assessor they serve as an objective indicator for a process
execution.

For the test plan ASPICE directly refers to ISO/IEC/IEEE 29119-314. This standard also provides
templates that can be used for other required work products and can be adapted for a particular purpose.
It must be ensured that within the context it contributes to the intended purpose of the processes.

2.1.2.5 Verification strategy and criteria for unit verification (SWE.4)

For the verification of the software units (SWE.4) ASPICE requires a verification strategy15. In the case
of SWE.5/SWE.6/SYS.4/SYS.5 test-specific processes ASPICE requires test strategy (see 2.1.2.3). The
test strategy “only” looks at dynamic tests. This is an addition to the verification strategy, which also
considers code review and static analysis (Both techniques are known as “static tests” from CTFL®).

The tester verifies compliance with the software detailed design and with the functional and non-
functional requirements according to the verification strategy. The strategy defines how the tester
provides the evidence. Therefore, the tester can use different combinations of static and dynamic test
techniques to verify the units.

13 Per CTFL [2] the project specific test strategy is also known as test technique.
14 This replaces the IEEE 829:1998 and the IEEE 829:2008 that are still used in ISTQB syllabi.
15 For the terms „verification strategy“ and „test strategy“, in ASPICE the term „strategy“ is used as opposed to project specific

„technique“ in ISTQB.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 20 of 61 July 4th‐‐2018

If a developer changes a unit, the tester must also evaluate this change. Therefore, the strategy for the
verification of units also includes a regression strategy. This includes the verification of the changed
code, the confirmation testing as well as the repeated verification of the non-changed parts (static and
dynamic regression tests).

In SWE.4.BP.2 ASPICE requires the development of criteria for verification of units. These criteria define
what needs to be fulfilled. Therefore, a tester can evaluate how much the unit fulfils the non-functional
requirements and matches the detailed design. The following criteria are possible criteria for the
verification of units:

 Unit test cases (including test data)
 Objectives for the test coverage (for example decision coverage)
 Tool-supported static analysis, which assesses the compliance with coding standards (such

as MISRA-C, see 4.1.1)
 Code reviews for units or parts of units, which cannot be assessed by tool-supported static

analysis.

According to Automotive SPICE (ASPICE), the documentation of the verification strategy is part of the
test plan ([13] paragraph 6.2.7) on unit level. The content is divided according to ISO/IEC/IEEE 29119-
3 and enhanced by the aspects of the static tests.

2.1.2.6 Traceability in Automotive SPICE (ASPICE)

As in CTFL® Core Sylabus [21], ASPICE also requires bidirectional traceability16. This allows the tester:

 to analyse impact
 to evaluate coverage or
 to track status.

Moreover, this allows the tester(´s) to ensure the consistency between the linked elements, textually as
well as semantically.

ASPICE differentiates between vertical and horizontal traceability [9]:

Vertically, ASPICE requires stakeholder requirements to be linked to the software components. In doing
so, the link over all levels of development ensures a consistency between the related work products.

Horizontally, ASPICE also requires traceability and consistency, in this case between the work results
of the development and the corresponding test specifications and results.

In addition, the basic practice SUP.10.BP8 requires bidirectional traceability between change requests
and work products affected by the change requests. Change request is initiated by a problem,
bidirectional traceability is required between change requests and the corresponding problem report.
Because of the occasionally large number of links, a consistent chain of tools can be helpful. This allows
the tester to efficiently create and manage the dependencies.

16 In the following, the term traceability will always imply the bidirectional traceability.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 21 of 61 July 4th‐‐2018

2.2 ISO 26262 (K3) [125 Min]

2.2.1 Functional safety and safety culture (K2) [20 Min]

2.2.1.1 Objective of functional safety for E/E systems

The functional and technical complexity of embedded systems is constantly rising. At the same time,
powerful software based electrical and electronic systems allow new complex functionalities such as the
automation of driving functions in the car.

Due to the high complexity, the risk of an erroneous action happening during development is increasing.
The consequence can be a (non-detected) fault state in the system. For systems with an inherent risk
potential for life and limb, the person responsible for safety therefore needs to analyse potential risks. If
there is an actual risk, he identifies suitable measures to mitigate their possible impact to an acceptable
level of risk.

The methods for the execution of such analysis are summarized in the standard for the functional safety.
The foundation standard is the IEC 61508. The International Organization for Standardization (ISO)
adapted ISO 26262 from this standard.

According to ISO 26262, Functional Safety is defined as absence of unreasonable risk due to hazards
caused by malfunction behaviour of E/E systems. In this sense, the term is to be differentiated from
other safety terms such as informational safety, product safety or work safety [ISO 26262] [IEC 61508].
Safety in the working environment and cybersecurity are not in the focus of ISO 26262. Lack of
Cybersecurity can endanger Functional Safety and cybersecurity contributes to product safety.

2.2.1.2 Contribution of the tester to the safety culture

Within the product development according to ISO 26262 it is not enough to monitor your own
organization´s processes. All participants need to live a process-independent approach. Everybody
must understand their impact on the development process and the safety of the final product. This
includes external partners and suppliers.

The participants must understand that their own actions do not happen independently of other
processes. Each step of the development constitutes an essential contribution to the compliance with
and the implementation of the Functional-Safety-relevant requirements. This responsibility does not end
with the product launch. It continues until the end of the system lifecycle.

The tester contributes to the safety culture by participating responsibly in all software development life
cycle phases and by carrying out his work with a continuous view of the overall context of the product
development [ISO 26262]

2.2.2 Integration of the tester in the safety lifecyle (K2) [15 min]

The safety lifecycle describes the phases of a safety-oriented product development. It starts with the
first product idea and the search for possible risks. After the specification of resulting safety
requirements, the implementation into a specific product follows. The cycle ends with the disposal of the
product at the end of its life (see also chapter 1.3).

The safety lifecycle according to ISO 26262 goes through the following phases:

 1st phase: Product concept
 2nd phase: Product development
 3rd phase: Product production and maintenance (after the “release for production”)

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 22 of 61 July 4th‐‐2018

The tester at supplier works mostly in the first two phases. Changes to the product within the third phase
lead to a return to the first or second phase, depending on their extent. Therefore, the tester also
participates in modifications. Based on the safety-related requirements (see chapter 2.2.4) he designs
the test cases and select the test techniques for the verification within the product development and the
validation of these requirements. The tester will then perform those in the relevant sub-phases of the
product development.

The activities of test planning normally take place within the concept phase. Adjustments in the resulting
documents (for example in the test plan or the test specifications) can, however, be necessary in any
phase. The test execution mostly takes place at the transfer between the individual sub-phases of the
product development. For example, between the implementation and the software integration as well
as further on to the hardware software integration. Moreover, the tester significantly contributes to the
transfer to the third phase with his test activities [ISO 26262]

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 23 of 61 July 4th‐‐2018

2.2.3 Structure and test specific parts of the standard (K1) [10 Min]

2.2.3.1 Design and structure of the standard [informative]

ISO 26262 consists of 10 volumes (parts):

 Vocabulary (volume 1),
 Management of functional safety (volume 2),
 The phases of the safety lifecycle:

o Concept phase (volume 3)
o Product development for entire system, hardware and software (volumes 4-6)
o Production and operation (volume 7)

 Supporting processes (volume 8)
 ASIL and safety-oriented analysis (volume 9)
 Guidelines for the application of ISO 26262 (volume 10).

Apart from volume 1 and volume 10, each volume includes normative content. Part of this is:

 A general introduction,
 The scope of application,
 Normative references and
 Requirements for the compliance with the standard.

These are followed by the specific topics of the corresponding volume. The structure of their description
is the same in each volume. The activities that are to be carried out are described via a similarly structure
in all volumes (parts) [ISO 26262]:

 Objective
 General information
 Introductory information
 Pre-requirements
 Further supporting information
 Requirements and recommendations
 Work results

2.2.3.2 Relevant volumes (parts) for the tester

For the software tester, the software verification and (at least partly) also the system validation is
paramount. Apart from Volume 1 (terminology), several other volumes (parts) are also of special interest:
Volumes 4 and 6 provide detailed information and requirements regarding recommended measures of
the software verification. This applies to the selection, the design and the implementation as well as to
the execution of the corresponding verification measures.

In doing so, these volumes focus on the test and verification specific aspects of the system (Volume 4,
including system validation) and software level (Volume 6). If hardware-specific aspects are also
relevant for this work, the tester will find those in Volume 5. Aspects concerning hardware as well as
software are considered within the scope of the hardware software interface (volumes 4,5 and 6).

Volume 8 of ISO 26262 forms a special position as this describes the process specific characteristics
of the verification at all test levels. In addition, it contains requirements for important supporting
processes for the tester, such as for example the documentation and the qualification of tools. [ISO
26262]

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 24 of 61 July 4th‐‐2018

2.2.4 The influence of criticality on the extent of the test (K2) [20 Min]

2.2.4.1 The criticality levels of ASIL

The ASIL (”Automotive Safety Integrity Level“) is a measure for the required risk reduction by measures
of the Functional Safety. Such measures can for example be an independent safety function for the
supervision of an E/E system or the implementation of specifically defined methods. For higher levels of
risk, more elaborate measures can be necessary.

At the beginning of the project, an expert team carries out the Hazard analysis and the risk assessment
for the product. For each risk identified by this analysis, he/she determines an ASIL with the help of one
of the methodologies defined in the standard. In the next step, he drafts safety goals and safety
requirements. These use the same ASIL as the risk they are based on.

The ISO 26262 defines four levels: from ASIL A for low, up to ASIL D for high safety requirements.

If the Hazard Analysis and Risk assessment leads to requirements below ASIL A, in terms of the
standard those are not safety relevant. These requirements will be covered by complying with the
existing quality management (QM). [ISO 26262]

2.2.4.2 Influence of ASIL on test techniques, test types and the extent of the test

The determined ASIL influences directly the extent of the tests to be implemented by the tester.
Depending on the particular level of the ASIL, the ISO 26262 standard recommends the execution of
different measures or packages of measures. In doing so, the rule is that the standard for higher ASIL
recommends more extensive and more detailed measures. For lower level ASIL, the execution of the
specified measures is often optional.

ISO 26262 specifies three level of recommendations: no recommendation, recommended, and highly
recommended. For “no recommendation”, the standard does not provide any recommendation for or
against the use of the corresponding measure. It can be used as a support without any concern.
However, its execution does not replace the measures recommended or highly recommended by ISO.

For the tester, this means that the standard recommends specific test design techniques and test types
for functional safety-relevant systems depending on the ASIL. The tester can only decide independently
within the framework of the standard regarding this special case. For example, use of equivalence
partitioning and boundary value analysis are recommended for ASIL A. On the other hand, for an ASIL
B or higher, those techniques are highly recommended (see also chapter 2.2.5).

The ASIL is not a characteristic of the entire product. It is connected to a specific safety objective and
the resulting safety requirements. Therefore, there can be significantly different test efforts for safety
requirements with different ASILs for one product. This must be taken into consideration by the tester
when planning the extent of the tests. [ISO 26262]

2.2.5 Application of content from CTFL® in the context of ISO 26262 (K3) [60 Min]

ISO 26262 offers the tester specific recommendations for his test activities in form of method tables.
These tables can be found in volumes (parts) 4, 5, 6 and 8. Apart from Functional Safety specific
recommendations for processes and activities, they also include the techniques to be used by the tester.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 25 of 61 July 4th‐‐2018

In this context, the standard uses the term “method” related to all applicable techniques or activities. At
this point, the Functional Safety terminology differs slightly from the terms of the ISTQB®. For the tester,
the following methods of the ISO 26262 are of special interest:

 Test design techniques (e.g. equivalence partitioning, boundary value analysis, …)
 Techniques of the test execution (e.g. simulation or prototype of part or system)
 Test types (e.g. non-functional tests such as performance test, soak test, ..)

 Test environments (e.g. HiL, vehicle, …)
 Static test techniques (e.g. reviews, static analysis, …)

The method table defines the method recommended by the standard for each ASIL level.

The tables are always designed in the same structure:

 ASIL A ASIL B ASIL C ASIL D

1 Method x o + ++ ++

2 Method y o o + +

3a Method z1 + ++ ++ ++

3b Method z2 ++ + o o

Table 1: Example of a method table

For each method, depending on the ASIL level, it is documented whether its use is recommended (+)
or even highly recommended (++). For methods marks as optional (o), there is no recommendation
provided by the standard for or against its use.

ISO 26262 also mentions equivalent alternative methods in the tables (in the example above, rows 3a
and 3b). Here, the tester needs to choose the suitable combination to be able to check the relevant
requirements in an ASIL-compliant way. The choice of the combination should be explained by the
tester.

In case of methods without alternatives (in the example, rows 1 and 2), this option of choice is not
permitted. Here, the tester must apply all methods that are highly recommended for the according ASIL
level.

From the example above, the following methods derive for the proof of a requirement per ASIL C:

 Method x: highly recommended, so normally to be applied if developing in accordance with
ISO 26262

 Method y: recommended, so to be applied if useful for the evidence
 Methods z1 and z2: here, at least method z1 is to be chosen as it has the higher level for ASIL

C.

ISO 26262 allows the tester to also use other methods than the ones mentioned in the tables. In that
case, however, he/she must explain the usefulness and the suitability of the method alternatively chosen
by the tester(´s). [ISO 26262]

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 26 of 61 July 4th‐‐2018

2.3 AUTOSAR (K1) [15 Min]

Introduction

AUTOSAR is an acronym for „AUTomotive Open System ARchitecture“ and the development
partnership behind it. This partnership was established in 2003 and includes mainly producers and
suppliers of the automotive industry. The goal of the partnership was: “To create and establish a freely
available standard for a software architecture in the vehicle environment”. Therefore, this standard is
aimed at addressing the increasing importance and complexity of the software [14]. Today, AUTOSAR
is a globally established standard for E/E systems. Therefore, the tester will certainly come into contact
with products of AUTOSAR. Therefore, it is important for tester(´s) to know the objectives, the basic
design and the points of contact with tester(´s) work.

2.3.1 Objectives of AUTOSAR (K1) [5 Min]

The following project objectives for AUTOSAR are led by the principle “Collaboration in the standards,
competition in the implementation”: [14, 15]:

1. Supports the transferability (portability) of software
2. Supports the scalability to different vehicle and platform variants
3. Supports different functional domains
4. Definition of an open architecture, that is maintainable as well as adjustable and expandable
5. Supports the development of reliable systems - characterized by availability, reliability,

safety(functional as well as with regards to cybersecurity, “safety & security”) - integrity and
maintainability

6. Supports a sustainable use of natural resources
7. Supports the collaboration between various partners
8. Standardization of basic software functionality of automotive electronic control units (ECUs)
9. Support of applicable automotive standards for vehicles and state of the art technologies.

2.3.2 General structure of AUTOSAR (K1) [informative] [5 Min]

The architecture of AUTOSAR consists of three separate layers:

 The layer that is independent from the hardware, containing with the AUTOSAR software
components (SW-C).

 The hardware-oriented layer with standardized basic software (BSW).
 The abstraction layer with the AUTOSAR runtime environment (RTE). This controls the data

exchange within and outside of the electronic control units and implements it between the
software components as well as between software components and basic software.

A further aspect is the AUTOSAR methodology for the harmonized development of control unit software.
In this, OEM´s and suppliers exchange information about description files through AUTOSAR templates
(so-called “arxml-files”). [14, 16]:

 The “ECU configuration description” includes data for the integration of the SW-C on the
electronic control unit.

 The “system configuration description” includes data for the integration of all control units in
one vehicle.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 27 of 61 July 4th‐‐2018

 The “ECU extract” includes the data from the “system configuration description” for a single
electronic control unit.

2.3.3 Influence of AUTOSAR on the work of the tester (K1) [5 Min]

AUTOSAR influences the work of the tester,especially at the following test levels18:

 Software component test and software integration test in a virtual environment (e.g. software
in the loop): With the help of a virtual BSW and RTE, a tester can test the SW-Components of
the application early [17, 18].

 Software test and software integration tests in the real control unit: Here, the tester gets
access to the communication on the RTE. With this, the tester can measure and stimulate the
behaviour of the SW-C at runtime [19].

 The AUTOSAR acceptance test is a test of the software system which ensures the
compliance of the AUTOSAR functionality at the communication and application levels. The
execution of the AUTOSAR acceptance test is optional [20, 21].

 System integration test: Functional integration and connection of different electronic control
units (for example, also in the vehicle). By simulating missing, probably distributed
functionalities, the tester can assess the system behaviour early [17].

18 acc. Test levels; see also 2.4.2

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 28 of 61 July 4th‐‐2018

2.4 Comparison (K2) [20 Min]

2.4.1 Objectives of ASPICE and ISO 26262 (K1) [5 Min]

There are several standards that propose requirements to the product development. Typically, these
highlight different aspects in the development. The ISO 26262 and ASPICE are compared here
regarding their objectives.

ISO 26262 [3] has the objective of avoiding risks from systematic failures in the development and
hardware failures in the operation by presenting suitable requirements and processes. For the
development of E/E systems, it defines the requirements for the processes and methods to be used by
the tester. These depend on the ASIL level of the item.

ASPICE [9] serves the purpose of determining the capability of the product development process within
the framework of assessments. To do so, ASPICE defines assessable criteria for these processes. In
contrast to the ISO 26262, these are independent of the criticality and of the products ASIL level.

2.4.2 Comparison of the test levels (K2) [15 Min]

Both ISO 26262 and ASPICE describe test levels. However, these are not completely consistent with
the test levels from CTFL® [21]. Therefore, for an efficient and effective collaboration, testers should
have a common understanding of all test levels.

The term “system” used in ASPICE and the terms “system” and “item” used in the ISO 26262 refer to a
product consisting of hardware and software components. The CTFL®, however, referred to software
when using the term “system”. Therefore, the test levels per ISTQB® [21] can be mapped to the test
levels in the ISO 26262 and ASPICE as follows:

ISTQB® ISO 26262 ASPICE 3.0

Acceptance test Safety validation (4-9)19 No equivalent

System of systems test20 Item integration and test

(4- 8)21

System qualification test (SYS.5)

System integration test System integrations test (SYS.4)

System test Verification of the Software-
safety requirements
(6-11)
Software integration and test (6-
10)

Software qualification test (SWE.6)

Component integration
test

Software integration test (SWE.5)

Component test Software-Unit-Test (6-9) Software unit verification (SWE.4)

Table 2: Assignment of the test levels

19 The safety validation only covers parts of an acceptance test per ISTQB.
20 The testing of several heterogenic distributed systems [34, 39]
21 Item integration and test includes three phases: the integration and the test of hardware and software of an element, the

integration and the test of all elements belonging to the item, and the integration and the test of the item in connection with other
items in the vehicle.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 29 of 61 July 4th‐‐2018

According to ISTQB® CTFL® Core Syllabus ([21], [48]) the test techniques are mostly applicable
independently from the test levels. ASPICE also does not generally assign any techniques to test levels.
Therefore, both leave the choice to the testers. In the ISO 26262 on the other hand, there are individual
method tables for each test level (see chapters 2.2.5 and 2.2.4.2). These provide the tester with
recommendations depending on the ASIL level as to which techniques he should use.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 30 of 61 July 4th‐‐2018

3 Testing in a virtual environment (K3) [160 Min]

Terms

Model in the Loop (MiL), Software in the Loop (SiL), Hardware in the Loop (HiL), Open-Loop-System,
Closed-Loop-System, Environment model (Automotive)

Learning objectives

AUTFL-3.1.1 Recall the purpose/the motivation behind a test environment in the automotive
development. (K1)

AUTFL-3.1.2 Recall the general parts of an automotive specific test environment. (K1)

AUTFL-3.1.3 Recall the differences between Closed-Loop systems and Open-Loop systems. (K2)

AUTFL-3.1.4 Recall the essential functions, databases and protocols of an automotive control unit.
(K1)

AUTFL-3.2.1.1 Recall the structure of a MiL test environment. (K1)

AUTFL-3.2.1.2 Explain the application area and the boundary conditions of a MiL test environment.
(K2)

AUTFL-3.2.2.1 Recall the structure of a SiL test environment. (K1)

AUTFL-3.2.2.2 Recall the application areas and the boundary conditions of an SiL test environment.
(K1)

AUTFL-3.2.3.1 Recall the structure of a HiL test environment. (K1)

AUTFL-3.2.3.2 Explain the application areas and the boundary conditions of a HiL test environment.
(K2)

AUTFL-3.2.4.1 Summarize the advantages and disadvantages for the testing with help of criteria of
the XiL test environments (MiL, SiL and HiL). (K2)

AUTFL-3.2.4.2 Apply criteria for the assignment of a given extent of the test to one or more test
environments. (K3)

AUTFL-3.2.4.3 Classify the three XiL test environments (MiL, SiL, HiL) in the V-model. (K1)

3.1 Test environment in general (K2) [30 Min]

3.1.1 Motivation for a test environment in the automotive development (K1) [5 Min]

The tester faces special challenges. On one hand, he is expected to start testing as early as possible to
find defects early in the development process. On the other hand, he needs a realistic environment to
test the system and to find the defects that would appear in the completed product. The tester can solve
this conflict by using suitable test environments that match the different development phases. In doing
so, the tester can implement and execute his individual test tasks before the completely produced or
developed electronic control unit (ECU) is available. By using different test environments, he can
simulate situations and execute test cases that would be difficult to reproduce in the actual vehicle, for
example, short circuits and open circuits in wiring harnesses or overload in network communications.
[24]

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 31 of 61 July 4th‐‐2018

3.1.2 General parts of a test environment (K1) [5 Min]

For the tester to be able to perform his activities, he needs a test environment in which the missing parts
are simulated. This environment helps the tester to stimulate the inputs of the test item and to observe
their outputs, also called ‘point of control’ (PoC) and ‘point of observation’ (PoO). According to
ISO/IEC/IEEE 29119, a test environment consists of the following parts:

 Hardware of the test environment (computer, if necessary also a real time capable computer,
test bench, development kit, …)

 Software of the test environment (operating system, simulation software, environment models)
 Facilities of communication (access to networks, data logger)
 Tools (oscilloscope, measuring tools)
 Laboratory (protection from electromagnetic radiation and noise)

An important part of the test environment is the environment model. Models are an important part of the
virtual test environment. They represent aspects of the real world such as the combustion engine,
transmissions, vehicle sensors and electronic control units or even the driver or the road conditions. The
test environment also has different access points. The tester can use these to measure and observe the
test item [25].

3.1.3 Differences between Closed-Loop and Open-Loop (K2) [15 Min]

The test environment is used to stimulate the input interfaces of the device under test and monitor its
outputs through the output interfaces. Afterwards, the behaviour at the output interfaces is analysed. In
a successful test, the observed behaviour corresponds to the expected output.

Generally, there are two types of control systems, closed loop and open loop. The difference relies on
the way the electronic control unit reacts to its environment and this generates different simulation
requirements for the virtual test environment.

3.1.3.1 Open-Loop-System

In an open-loop system, the outputs of the system have no relation to the inputs. The system is open
ended and there is no feedback. In this case the inputs of the test item are directly defined by the tester
in the test procedure.

The application case for Open-Loop and Closed-Loop systems depends strongly on the operating
principle of the test item. If the test item has a reactive behaviour or if it mirrors a state machine, an
Open-Loop system is preferred. In the interior and chassis electronic there are many examples of Open-
Loop systems (see lights and switches).

3.1.3.2 Closed-Loop-System

The stimulation in a Closed-Loop system (also known as in-the-Loop) takes the output of the test item
into consideration. This is done via an environment model, which collects the outputs and forwards them
directly or indirectly to the input of the test item. Therefore, a control loop is created in the test
environment.

For the testing of controllers, the Closed-Loop systems are used more often. Using this, the tester can
test complex functions such as motor and gear controls as well as driver assist systems such as the
anti-lock braking system (ABS®) or the vehicle dynamics control (ESP®). [26, 27]

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 32 of 61 July 4th‐‐2018

3.1.4 Essential interfaces, databases and communication protocols of a electronic
control unit (K1) [5 Min]

A control unit in the automotive environment is an embedded system, which consists of hardware and
software. The electronic control unit receives different analogue and digital inputs, which constantly
collect environmental data in the form of voltage, current and temperature. Moreover, communication
bus systems provide further information to the control unit. Which comes from sensors or other electronic
control units, which either collect and process the information themselves or generates them. The test
object manages the data in the memory to process the output action, information or data. The generated
outputs are also carried out via analogue and digital output pins, bus systems or diagnosis interfaces.

The databases are data warehouses and define the input and output signals of the control unit. These
data also include descriptions, units and conversion formulas of the signals.

The communication protocols describe the data exchange via the corresponding physical interfaces.
These protocols define which voltage or bit sequence represents which value of the signal.

The choice of the database and the communication protocol depends on the function of the electronic
control unit. For example, to access diagnosis functions in the control unit, the tester needs the
information about the used database (for example ASAM MCD2 D; also “Open Diagnostic Data
Exchange”) and the communication protocol (“Unified Diagnostic Services” per ISO 14229). Further
automotive specific databases are defined for example in the ASAM standard [27, 28].

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 33 of 61 July 4th‐‐2018

3.2 Testing in XiL test environments (K3) [130 Min]

In the automotive industry, the following types of XiL-test environments are used:

 Model in the Loop (MiL),
 Software in the Loop (SiL),
 Processor in the Loop22 (PiL),
 Hardware in the Loop (HiL) and
 Vehicle in the Loop23 (ViL)

Here, the tester should become familiar with the test environments (MiL, SiL and HiL) and understand
them. The following paragraphs look deeper into the structure and the application areas of the different
test environments. XiL in this sense stands as generic term for the different test environments.

3.2.1 Model in the Loop (MiL) (K2) [20 Min]

3.2.1.1 Structure of a MiL test environment

In a MiL test environment, the test item is available as a model. This model is executable but not
compiled for a special hardware. Such models are modelled by the developers using special modelling
tools. For the tester to be able to execute and test those models, he needs a test environment. This is
mostly implemented in the same development environment as the test item itself. This test environment
can additionally contain an environment model. The tester can stimulate and observe the test item via
access points. The access points can be placed arbitrarily in the model of the test item and also in the
environment model. The model of the test item is connected to the environment model and can easily
be implemented and used as a Closed-Loop system.

3.2.1.2 Application areas and boundary conditions of a MiL test environment

With a MiL test environment, the tester is capable of testing the functional system design. During the
development (following the general V-model) the tester can also test single components up to an entire
system. To execute the test, the tester needs a computer and the corresponding simulation software
including the environment model. The environment model becomes more complex as the scope of
functions of the test item increases. The aspects of reality and environmental factors are very complex.
The execution times for the models also increases disproportionately. Therefore, the effort to implement
a MiL test environment is no longer worthwhile from a certain phase of the development.24

By using a MiL test environment, the tester can test the functionality of models over all development
levels at the early phase of development (left side of the V-Model). But it is not common to enable the
environment model to simulate bus or diagnosis functions or physical behaviour (such as cable breaks
or shorts). These tasks can be carried out more easily and at less cost with other test environments.

In a MiL test environment, it must be appreciated that the test execution does not take place in real time.
As all components are available as a model, the test execution runs in simulation time. The more
complex a system, the more execution time or power the computer needs to provide all necessary
information. The duration of the simulation in smaller systems is shorter than the execution in real time.
However, a big advantage is that the tester can pause the simulation at any time to execute detailed
analysis and assessments.

22 This test environment is not considered in this syllabus and is purely informative.
23 This test environment is not considered in this syllabus and is purely informative.
24 This is also valid for all other XiL environments.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 34 of 61 July 4th‐‐2018

3.2.2 Software in the Loop (SiL) (K1) [10 Min]

3.2.2.1 Structure of a SiL test environment

The test item is compiled for a specific SiL test environment. This means the source code has been
compiled with a software tool for a certain computer architecture. This machine code is (only) readable
by the test environment as it consists of binary data sets. For the test environment to be able to access
signals, a wrapper is necessary. A wrapper is additional software that creates a specific access interface
for the machine code. Therefore, the tester can stimulate software signals and observe them. The
wrapper defines the access points to the test item but does not perform its functional tasks.

For the simulation, an environment model is needed. The test item is connected to the test environment
with the help of the wrapper. The test execution is carried out on a computer without special hardware.
The tester needs a software tool that is capable of creating a wrapper for the test item with access points
to the test environment.

3.2.2.2 Application areas and boundary conditions of a SiL test environment

If the developer generates source code based on a model, the real behavior of the software can be
different to the expected behavior. This can be caused by different data types in the model (mostly
floating point) and in the compiled software code (mostly fix point) but also by different memory spaces.
These aberrations in the expected behavior can be tested for the first time in a SiL test environment.
The tester can use techniques like back-to-back-Testing (see also 4.2.2) to compare the behavior.

The tester runs the tests, analogous to the MiL test environment, in simulation time. Depending on the
calculation technique and the complexity of the environment model, this simulation time can be shorter
or longer than in real time. The tester can pause the execution at any time to execute detailed analysis
and assessments. Functional, interface and regression tests are very common test types that can be
evaluated in a SiL test environment. On the other hand, performance and reliability tests are unusual.
These Software characteristics are mostly affected by the target hardware.

3.2.3 Hardware in the Loop (HiL) (K2) [20 Min]

3.2.3.1 Structure of a HiL test environment

If the test item is available as a prototype or if it is already completely developed, the tester can use a
HiL test environment to execute tests. The typical parts of a HiL test environment are:

 A power supply to set different supply voltages
 A real time capable computer for the environment model to run on
 Several real parts that are not implemented in the environment model
 A signal processing of signal type and signal amplitude
 A fault insertion unit (FIU, see also 4.2.3) for the simulation of cable breaks and shorts
 A breakout box as an additional access interface in the cable harness
 A remaining bus simulation for the simulation of the non-existing bus participants

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 35 of 61 July 4th‐‐2018

3.2.3.2 Application areas and boundary conditions of a HiL test environment

The access points in a HiL test environment are diverse. The tester must be aware that using the wrong
access points to the test item can render the test results useless. Knowing the different access points
and their connections in the HiL test environment enables effective tests to be implemented, executed
and assessed.

The HiL test environment is more complex than the previously mentioned test environments (MiL and
SiL) due to its several parts. The tester must master this complexity to address his test tasks. The HiL
test environment can be used for component tests, integration tests and system tests. The objective is,
among other things, to find functional and non-functional defects in the software and hardware.

With the help of HiL test environments, different test levels can be analysed. If the test item is a single
electronic control unit (ECU), it is called component25 HiL. If the test item is a combination of several
electronic control units, it is called system HiL. The tester uses the component HiL to test functions of
the control unit. In the system HiL, the focus is on the testing of the data exchange between the electronic
control units and on the system test of the entire system.

In contrast to the previously mentioned test environments (MiL and SiL) the simulation time in a HiL test
environment always runs in real time. The reason for this is that the software is running on a real
hardware. Pausing or stopping is no longer possible in this test environment. Therefore, the test
environment includes a real time capable computer that is able to collect and serve all relevant signals
within a predetermined period of time.

3.2.4 Comparison of the XiL test environments (K3) [80 Min]

3.2.4.1 Advantages and disadvantages oftesting in the XiL test environments

The tester understand the attributes of the different test environments. In doing so, he can understand
and assess the advantages and disadvantages of testing in each environment. The criteria are shown
in table 3.

Criteria MiL test environment SiL test environment HiL test environment

Closeness to reality

Low Low to medium High

Reality is simulated,
many characteristics are
abstracted, the focus is
on the structures and
logic

Compiled real software
can be executed
(without Hardware)

Integrated system, able
to run

Time and effort of
debugging

Low Medium High

Defects found in the
model of the test item
(model adjustment)

Defects found in
programmed software
(software adjustment)

Defects found in system
level (system adjustment)

Effort for
implementation and
maintenance

Low Medium High

Create environment
model

Create environment
model and wrapper

Create environment
model and wire the
hardware components

25 The term „component“ is in this case used for an electronic control unit (ECU) in the context of a E/E-system.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 36 of 61 July 4th‐‐2018

Effort for test
preparation

Low Medium High

Environment can set up
quickly

Environment can set up
quickly

Design, implementation
and evaluation of the
tests require high effort

Necessary level of
maturity of the test item

Low Medium High

System models are
simulated

Initial functions are tested
with the target software

One or more executable
electronic control units or
partial systems are tested
as entirely as possible

Necessary level of
detail of the test basis
(specification)

Medium Medium to high High

Without complete
specification models are
tested that even partially
contribute to the
ascertainment of the
specification

The relevant information
on SW level must be
available (detailed
component specification)

Requirements can be
tested on the system
level (complete system
specification)

Access to the test item High Medium Low

All signals in a model can
be observed and
controlled.

Only the signals available
in the wrapper can be
observed and controlled.

Only the signals available
in the hardware or
communication protocols
can be observed and
controlled.

Table 3: Criteria and their impact for MiL, SiL and HiL test environments

3.2.4.2 Allocation of test cases to one or more test environments

In the following table test objectives are described in more detail and they are assigned to suitable test
environments.

Test type Description by Examples MiL SiL HiL

Test customer
requirements

Correct provision of the required functionality. This includes the
correct processing of input, the correct reaction to input as well as
the correct data output at the exit point.

O O +

Test mechanisms for
defect detection and
handling

• Detection and handling of random hardware faults
• Detection and handling of software defects
• Transfer to a safe state after defects are detected – e.g.
deactivation of a system

+ + +

Test reaction to
configuration data

Check the influence of Configuration data (such as parameter
sets or variant coding) to the behaviour of the test object.

O + +

Test diagnosis
functions

Correct provision of the required diagnosis functionality, such as
the defect detection as well as defect setting and reset
requirement, the defect setting in the defect memory (for example
On-Board diagnosis or in the garage)

- + +

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 37 of 61 July 4th‐‐2018

Test interaction at
interfaces

Check internal and external interfaces of the test item
O + +

Prove usability The observed test item should be usable as required and as
expected by the user.

- O +

Key: + recommended, o possible, - not sensible

Table 4: Comparison of test types in MiL, SiL and HiL test environments

This table shows that test environments can be suitable for certain test objectives. This diversified
approach becomes evident especially in the testing of the mechanisms for defect detection and
handling. In accordance with the principle of “Front-loading”26 the general conclusion is that basic
requirement and design defects are already detected early through testing. Therefore, MiL is used for
detection of general design defects, SiL mostly for technical software defects and HiL for technical
hardware/software defects. Furthermore, it is important to note that apart from the evidence of stability
and reliability, efficiency and performance as well as usability, all test types focus on the functional
suitability of the test item.

In the test strategy, the tester (in the role as test manager) assigns the scope of testing to several
different test environments. By combining the criteria out of the tables 3 and 4 the test manager can
choose the optimal test environment.

3.2.4.3 Classification of the XiL test environments (MiL, SiL, HiL) in the general V-model

Technical system design is on the left-hand side of the V-model. The tester can test this design with a
MiL test environment. If the test item and the MiL test environment are further developed, the tester can
also execute component and integration tests with this test environment.

The tester can use a SiL test environment if single components of the test item are programmed and
compiled. Typical tests for a SiL test environment are component and integration tests. These can be
found on the right-hand side of the V-model.

In system tests, certain functionalities of the test item have been entirely developed. The tester can
execute the system test with a HiL test environment. [24]

With a correct assignment of the test environment to the test levels, the entire test process can be
optimized according to the following three aspects:

Minimizing the product risks

 Finding test level specific failure types (for example performance tests at system level within a
HiL environment)

Minimizing the test cost

 For every test type the adequate test levels are required
 Transfer of tests to earlier, less costly and virtual test levels

Conformity to standards

 In the method tables of the ISO 26262 standard, test environments are recommended
depending on ASIL.

26 the earlier a defect is detected the better

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 38 of 61 July 4th‐‐2018

4 Automotive-specific static and dynamic test techniques
[230 Min]

Terms

Coding standard, back-to-back testing

Learning objectives

Static test techniques

AUTFL-4.1.1 Explain the purpose and requirements of the MISRA-C:2012 guideline with the help of
examples. (K2)

AUTFL-4.1.2 Apply a review of requirements using the quality characteristics of the ISO/IEC 29148
standard that are relevant to testers. (K3)

Dynamic test techniques

AUTFL-4.2.1 Create test cases to achieve modified condition/decision testing coverage. (K3)

AUTFL-4.2.2 Explain the use of back-to-back testing by giving examples. (K2)

AUTFL-4.2.3 Explain the principle of fault injection testing by giving examples. (K2)

AUTFL-4.2.4 Recall the principles of requirements-based testing. (K1)

AUTFL-4.2.5 Apply context dependent criteria for the choice of suitable and necessary test design
techniques. (K3)

4.1 Static test techniques (K3) [75 Min]

Introduction

Static testing is examining work products of the software development without executing them. This
includes evaluation by people (review) and the tool-supported static analysis.

4.1.1 The MISRA-C: 2012 Guidelines (K2) [15 Min]

It is part of the state of the art today that the developer complies with coding guidelines when
programming. The ISO 26262 standard also recommends that for safety-relevant software27. Coding
standards help to avoid anomalies in the software, which can possibly lead to defects. At the same time,
they support the developer in improving the maintainability and portability of his software.

The MISRA-C:2012 Guidelines [15] include guidelines for the programming language C. It defines
two types of guidelines:

 Rules are in general verifiable by static analytic tools. For example, that the source code does
not include nested comments.

 Directives are not entirely verifiable by static analytic tools. The reason for that is that they
rather refer to details of the development process or documents outside of the software. For
example, if the developer has sufficiently documented the implemented behaviour.

27 See also [ISO 26262:2011] Part 9 Table 6

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 39 of 61 July 4th‐‐2018

Each guideline is categorised as one of the following three levels of obligation:

 “advisory” guidelines should be followed by the developer if the effort is appropriate.
 “required” guidelines may only be neglected by the developer if he can conclusively explain it
 “mandatory” guidelines must be followed by the developer. Exceptions are not allowed.

Organizations can individually intensify the requirement of a rule or directive, but they can never lower
it.

4.1.2 Quality characteristics for reviews of requirements (K3) [60 Min]

Specifications are the basis for the development and testing. Therefore, defects in those specifications
lead to cost and time intensive follow up activities. This applies especially if the defects are only detected
in late development phases such as the acceptance testing or in operation. Reviews are an effective
measure to find defects in specifications early and consequently be able to fix them early and at low
cost.

During test analysis, the tester must check the specifications for the test item [21]. In doing so, the
specifications are especially checked with regards to their suitability as a test basis. Quality
characteristics help the tester during the reviews of the specifications to focus his attention and find as
many defects as possible. ISO/IEC/IEEE 29148:2011[37] includes quality characteristics for single
requirements as well as for groups of requirements.

Requirements characteristics per ISO/IEC/IEEE 29148:2011 relevant for testers

Characteristics for individual requirements respectively for a set of requirements:

 Verifiable: Each requirement can be verified by static or dynamic tests.
 Unambiguous: Each requirement contains clear test conditions.
 Consistent: Each requirement is consistent in itself and with other requirements.
 Complete: Each requirement considers all possible cases (also error, abort and exception

scenarios). At the same time, all tables and diagrams used are labelled; abbreviations and
terms used are defined.

 Traceable: Each requirement is clearly marked (for example by an ID). This allows an impact
analysis and the coverage by test cases is transparent.

 Bounded (for a set of requirements): It is clearly defined, what is the scope to be developed
and therefore tested.

 Singular: No requirement can be divided into sensible partial requirements.

As a tool for the review, the tester can for example derive review checklists from the characteristics.
These review checklists then include suitable questions for the previously mentioned statements. The
tester must answer them to the best of his knowledge and belief. The following list includes an excerpt
of possible questions that must be answered for each requirement:

 Verifiable: Is the requirement verifiable by static or dynamic tests on the according test level?
 Explicit: Does the requirement prevent any room for interpretation or is it not build upon

implicit knowledge or experience knowledge?
 Consistent: Is the requirement consistent in itself and towards other requirements?
 Singular: Can the requirement not be divided into further partial requirements, e.g. by solving

logical links such as if-then-else constructs within the requirements and separately noting the
resulting partial requirements?

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 40 of 61 July 4th‐‐2018

According to Hobbs: Embedded Software Development for Safety-Critical Systems [30], requirements
should also be feasible, implementation-free and necessary. It is usually difficult for the tester to evaluate
these characteristics; however, they marginally influence the test design.

4.2 Dynamic test techniques (K3) [155 Min]

4.2.1 Condition testing, multiple condition testing, modified condition/decision testing
(K3) [60 Min]

The techniques described here are part of the white-box test design techniques (for further details see
also syllabus CTAL-TTA). The tester derives the test cases directly from the structure of the test item
(for example from the source code).

In comparison to decision testing, in which the tester designs the test cases with regards to the coverage
of the decision in the code (see [21]), condition testing refer to the individual conditions within a decision.
Therefore, these techniques address the way how a decision is made: Each decision consists of one or
more “atomic” conditions. If the tester executes a test case, each of these conditions can the value
“true” or “false”. The overall value of the decision then results from the logical combination of these
individual values [7].

If a decision only consists of one single condition, these techniques are identical to the decision
testing. Otherwise, these techniques differ as follows [7]:

 (Simple) condition testing (technique A in the table 5): The tester designs test cases with the
objective of covering the true/false outcomes of each individual condition. With an unwise
choice of test data (see table 5), a 100% (simple) condition coverage can be achieved, but not
full coverage of the decision outcomes. In the table below, the individual conditions B1 and B2
are exercised both true and false, but the decision outcome for both test cases evaluates to
“false”).

 Multiple condition testing (technique B in the table below): The tester designs test cases with
the objective of covering all combinations of values related to the individual conditions. If every
combination of values is tested, each decision outcome is tested as well.

 Modified condition/decision testing (MC/DC) (technique C in the table below): This is similar
to multiple condition testing (B). However, the technique only considers combinations in which
individual conditions (B1, B2) independent influence the decision outcome. In the case of test
case TC4, changing either B1 or B2 from “false” to “true” does not result in a change to the
decision outcome (i.e. it remains “false”). 100% MC/DC coverage can be achieved by
TC1,TC2 and TC3; it is not necessary to consider TC4.

Table 5 shows with the help of an example the necessary test cases for 100% coverage depending on
the test technique chosen:

 Individual conditions

Decision outcome for the
expression:

E = B1 AND B2

Technique

Test case B1 B2 A B C

TC 1 B1=TRUE B2=FALSE E =FALSE X X X

TC 2 B1=FALSE B2=TRUE E=FALSE X X X

TC 3 B1=TRUE B2=TRUE E=TRUE X X

TC 4 B1=FALSE B2=FALSE E=FALSE X

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 41 of 61 July 4th‐‐2018

Table 5: Comparison of the techniques condition testing (A), multiple condition testing (B) and modified
condition/decision testing (MC/DC test) (C)

The example shows the limits of the techniques: In case of the (simple) condition testing (A), despite a
condition coverage of 100%, the tester takes the risk of only covering one decision outcome. A better
choice of the test cases would correct this (in the example TC 3 and TC 4).

With the use of the multiple condition testing (B) the tester can cover all possible inputs and outputs.
However, the number of tests to be executed is the highest for this technique.

By using the modified condition/decision testing (C), the tester can achieve a complete coverage of all
single conditions and all decisions with a fewer number of tests compared to multiple condition testing.

4.2.2 Back-to-Back-Testing (K2) [15 Min]

Back-to-back testing (also: comparative test [32]) is more an approach to testing than a test (design)
technique. It compares two or more variants of a test item. To do that, the tester executes the same test
case on all variants and compares the results. If the results are identical, the test has been passed. If
the results differ, the cause of the detected difference is analysed.

The test items must be based on the same requirements from the content point of view. Only in this way
can they show a comparable behaviour. The requirements do not serve as a test basis for the test
design. On the contrary, the back-to-back test is expected to show the slightest unintended differences
between the test items or the test environment. This test does therefore not replace the requirement-
based test.

In the simplest case, the test items of a back-to-back test are different versions of the same software. In
this case, for example an earlier version of the test item serves as test oracle for the back-to-back-
test(similar to a regression test) [33]. Another alternative is the comparison of an executable model with
the (manually or automatically) generated code [32]. In this case, it is a form of model based testing, in
which the executable model also serves as test oracle [34]. This technique is therefore very suitable for
automated test design. Here, the tester derives not only the expected result from the model, but also
automated test cases.

4.2.3 Fault injection testing (K2) [15 Min]

Fault injection testing is more an approach for robustness testing than a special test (design) technique.
Programming techniques such as the error handling serve the purpose of making the system react to
internal and external defects in a robust and safe way. To test these techniques, the tester can
selectively insert defects into the system at the following points [34]:

 Defects in external components: If the system for example has to safely detect implausible
values from sensors.

 Defects in interfaces: If for example the function of the system must not be harmed by short
circuits or lost messages.

 Defects in the software: If the system should detect and handle internal defects.

In the classic fault injection, the tester inserts a defect by manipulating the real component.

External defects (also interface defects) can be simulated by the tester y at run-time. The fault injection
usually takes place in a HiL test environment. Here, a fault insertion unit (FIU) [35] serves as a driver for
physical defects. Among these defects rank in particular short circuits and open circuits. The simulation
of software based interface defects can often already be done in a SiL test environment.

Defects in the software can often only be inserted in the development environment for example via
debugger or XCP. The execution is therefore in practice often very time intensive.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 42 of 61 July 4th‐‐2018

4.2.4 Requirements-based testing (K1) [5 Min]

Requirements-based testing is an approach (a practice) for testing [22] and less a test (design)
technique. The approach aims at covering the requirements with test cases. Therefore, the tester
decides whether the test item meets the requirements.

In this approach, the tester analyses the requirements, derives test conditions, designs test cases and
executes them. Based on the analysis of the test results, he refines the tests. In doing so, he can also
create further test cases. In addition, the tester applies further test practices (such as experience based
testing). Therefore, he can reduce the risk of defects for example by regression tests in form of
exploratory tests.

If the requirements are incomplete or inconsistent, the tests designed on that basis suffer from the same
problems. On the other hand, the tester may not be able to test all the requirements if they are very
detailed. Here, a prioritization of the test cases is mandatory. [3]

4.2.5 Context-dependent selection of test techniques (K3) [60 Min]

The ISO 26262 standard (Volume 6) suggests that the tester applies test design techniques (see chapter
2.2) depending on the ASIL level. These include among others the techniques mentioned in CTFL® and
previously in chapter 4.2:

 Requirements-based testing
 Equivalence partitioning
 Boundary value analysis
 Statement testing
 Decision testing
 Modified condition/decision testing
 Error guessing
 Fault injection
 Back-to-back testing

However, the decision on what technique to use depends on the following factors, among others:

State of the Art

Does the technique represent the current state of the art for this purpose? Here, standards like the
ISO/IEC/IEEE 29119 and the ISO 26262 help. The ISO 26262 standard even suggests applicable
techniques depending on the ASIL level. Deviations from the recommendations of the standard are
discussed in chapter 2.2 regarding ISO 26262.

Test basis

Does the test basis provide suitable test conditions for the technique? For example, the tester can only
form equivalence classes if the test basis includes parameter or variables. He must be able to group
their values into reasonable equivalence classes. Similar conditions apply to boundary values. He can
only test those if the value range is defined in a linear way.

Risk-based testing

Risk-based testing means the identification of product risks and the consideration of the risk level for
the selection of the techniques. For example, the test of a boundary value only makes sense if there is
a risk of boundary violations occurring and if the impact of such violations constitutes a risk.

Test level

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 43 of 61 July 4th‐‐2018

Can the technique reasonably be used on the test level? White-box tests are particularly suitable if the
source code or the internal structure serves as the test basis. In the ideal case, the structural degree of
coverage is measurable. For black-box tests, the test item needs to be available and observable. For
example, testing of an equivalence class of a sensor in the system test may be more efficient than in
the component test. If a test design technique is not usable on one test level, the tester should choose
a different test level in accordance with the test strategy.

Example of the selection of test techniques

The following table contains a list of test design techniques enhanced by an example of the assessment
of a user with regards to several, previously mentioned factors and the selection of the test design
technique based on that.

 Test design technique Recommended
for use with
ASIL A?

Test
basis
suitable
?

Risk, if defect
not detected?

Test level
„system
test“
reasonable
?

Selection

1 Requirements-based
testing

++ YES ++ YES X

2 Equivalence

partitioning
+ YES ++ YES X

3 Boundary value analysis + NO - YES

4 Statement testing ++ YES ++ NO

5 Decision testing + YES ++ NO

6 MC/DC + YES + NO

7 Error guessing + NO ++ YES

8 Fault injection + YES + NO

9 Back-to-back Testing + NO ++ YES

Table 6: Example of the selection of a test technique

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 44 of 61 July 4th‐‐2018

Annex

Automotive Data Bases and Communication protocols

Interfaces database Communication protocols

Memory ASAM MCD-2 MC
(also ASAP2 or A2L)

ASAM MCD-1 XCP
(Universal Measurement and Calibration Protocol)

ASAM standard CCP
(CAN Calibration Protocol)

Bus ASAM MCD2 NET
standard

(also FIBEX - Field Bus
Exchange Format)

FlexRay
(ISO 17458)

CAN
(Controller Area Network per ISO 11898-2)

DBC
(communication
database for CAN)

CAN
(Controller Area Network per ISO 11898-2)

Diagnosis ASAM MCD2 D

(also ODX)

CDD
(CANdelaStudio
diagnostic description)

KWP2000 (ISO 14230)

ISO-OBD (ISO 15031)

UDS (ISO 14229)

Table 7: Common databases and communication protocols from the automotive industry

AUTOSAR has standardized on an XML format, which integrates the databases of a complete vehicle.
This is the ARXML format (AUTOSAR Integrated Master Table of Application Interfaces, XML scheme
R3.0).

ASAM stands for “Association for Standardization of Automation and Measuring Systems”

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 45 of 61 July 4th‐‐2018

List of tables

Table 1: Example of a method table .. 25
Table 2: Assignment of the test levels ... 28
Table 3: Criteria and their impact for MiL, SiL and HiL test environments ... 36

References

[1] International Organization for Standardization (ISO), International Electrotechnical Commission

(IEC), ISO/IEC TS 24748‐1:2016 Systems and software engineering ‐ Life cycle management ‐

Part 1: Guide for life cycle management, 2016.

[2] Verband der Automobilindustrie e.V. (VDA) / QMC Working Group 13 / Automotive SIG,

Automotive SPICE Process Assessment Model, Berlin: Verband der Automobilindustrie e. V.

(VDA), 2008.

[3] AUTOSAR, „http://www.autosar.org/specifications/,“ [Online]. [Zugriff am 04 04 2016].

[4] ZVEI, Best Practice Guideline ‐ Software Release, Frankfurt am Main,: ZVEI, 2016.

[5] International Software Testing Qualifications Board (ISTQB) / German Testing Board e.V. (GTB),

ISTQB/GTB Certified Tester Advanced Level (CTAL) Syllabus ‐ Technical Test Analyst (TTA) ‐

Deutsche Ausgabe, German Testing Board e.V. (GTB), 2012.

[6] Verband der Automobilindustrie e.V. (VDA) / QMC Working Group 13, „Status and outlook VDA

QMC working group 13 ‐ Automotive SPICE 3.0, Blue‐Gold Volume,“ in Sixth VDA Automotive

SYS Conference, Berlin, 2016.

[7] Verband der Automobilindustrie e.V. (VDA) / QMC Working Group 13 / Automotive SIG,

Automotive SPICE Process Assessment / Reference Model,

http://www.automotivespice.com/download/, 2015 Version 3.0.

[8] International Organization for Standardization (ISO), ISO 26262:2011 Road Vehicles ‐ Functional

Safety, Genf, 2011.

[9] AUTOSAR, „Glossary AUTOSAR Release 4.2.2,“ [Online]. Available:

http://www.autosar.org/fileadmin/files/releases/4‐

2/main/auxiliary/AUTOSAR_TR_Glossary.pdf. [Zugriff am 03 03 2016].

[10] H. Wallentowitz, Handbuch Kraftfahrzeugelektronik : Grundlagen, Komponenten, Systeme,

Anwendungen ; mit zahlreichen Tabellen, Wiesbaden: Vieweg, 2016.

[11] K. Borgeest, Elektronik in der Fahrzeugtechnik, Springer Vieweg, 2014.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 46 of 61 July 4th‐‐2018

[12] MISRA Electrical Group MIRA Ltd., MISRA‐C:2012‐Programmierrichtlinien – Version 3., UK,

Warwickshire, 2013.

[13] 754‐2008 ‐ IEEE Standard for Floating‐Point Arithmetic, 754‐2008 ‐ IEEE Standard for Floating‐

Point Arithmetic, 2008.

[14] International Organization for Standardization (ISO), International Electrotechnical Commission

(IEC), Institute of Electrical and Electronics Engineers (IEEE), ISO/IEC/IEEE 15288:2015 Systems

and software engineering ‐ System life cycle processes, 2015‐15‐05.

[15] Verband der Automobilindustrie e.V. (VDA), Entwicklung softwarebestimmter Systeme ‐

Forderungen an Prozesse und Produkte, Bd. 13, Verband der Automobilindustrie e.V. (VDA),

2004.

[16] Measuring, Association for Standardization of Automation and, „http://asam.net/,“ 2016.

[Online]. [Zugriff am 2016].

[17] K. Hoermann, M. Mueller, L. Dittmann und J. Zimmer, Automotive SPICE in Practice in der Praxis

– Interpretationshilfe für Anwender und Assessoren, Heidelberg: dpunkt verlag GmbH, 2.

Auflage, 2016.

[18] National Instruments Germany GmbH, „Einsatz von Fault Insertion Units (FIUs) für die

Überprüfung elektronischer Steuergeräte,“ Nr. 25. Juni, 2015.

[19] Patzer und Zaiser, „Einsatzgebiete für XCP,“ in XCP‐Das Standardprotokoll für die Steuergeräte

Entwicklung, Stuttgart, Vector Informatik GmbH, 2014.

[20] International Software Testing Qualifications Board (ISTQB) / German Testing Board e.V. (GTB),

ISTQB/GTB Certified Tester Foundation Level (CTFL) Syllabus ‐ Version 2011 1.0.1 ‐ Deutsche

Ausgabe, German Testing Board e.V. (GTB), 2011.

[21] International Organization for Standardization (ISO), International Electrotechnical Commission

(IEC), Institute of Electrical and Electronics Engineers (IEEE), ISO/IEC/IEEE 29119‐1:2013

Software and systems engineering ‐ Software testing ‐ Part 1: Concepts and definitions, 2013‐

09‐01.

[22] International Organization for Standardization (ISO), International Electrotechnical Commission

(IEC), ISO/IEC 12207:2008 Systems and software engineering ‐ Software life cycle processes,

International Organization for Standardization (ISO), 2008‐02‐01.

[23] A. Spillner, T. Roßner, M. Winter und T. Linz, Praxiswissen Softwaretest Testmanagement: Aus‐

und Weiterbildung zum Certified Tester ‐ Advanced Level nach ISTQB‐Standard, Heidelberg:

dpunkt.verlag, 2008.

[24] Verband der Automobilindustrie e.V. (VDA), Sicherung der Qualität in der Prozesslandschaft,

Bd. Band 4, Verband der Automobilindustrie e.V. (VDA), 2011.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 47 of 61 July 4th‐‐2018

[25] dpa, „www.motor‐talk.de,“ 24 02 2015. [Online]. Available: http://www.motor‐

talk.de/news/die‐zahl‐der‐modelle‐waechst‐der‐absatz‐nicht‐t5219608.html. [Zugriff am 12 12

2016].

[26] AUTOSAR, „Requirements on Acceptance Test AUTOSAR TC Release 1.1.0,“ [Online]. Available:

http://www.autosar.org/fileadmin/files/standards/tests/tc‐1‐

1/general_auxiliary/AUTOSAR_ATR_Requirements.pdf. [Zugriff am 2016 12 12].

[27] R. Schönfeld, Regelungen und Steuerungen in der Elektrotechnik, Verlag Technik GmbH, 1993.

[28] AUTOSAR, „Project Objectives AUTOSAR Release 4.2.1,“ [Online]. Available:

http://www.autosar.org/fileadmin/files/releases/4‐

2/main/auxiliary/AUTOSAR_RS_ProjectObjectives.pdf. [Zugriff am 03 03 2016].

[29] AUTOSAR, „Main Requirements AUTOSAR Release 4.2.1,“ [Online]. Available:

http://www.autosar.org/fileadmin/files/releases/4‐2/main/auxiliary/AUTOSAR_RS_Main.pdf.

[Zugriff am 03 03 2016].

[30] G. Baumann, „Was verstehen wir unter Test? Abstraktionsebenen, Begriffe und Definitionen,“

FKFS 1. AutoTest; Fachkonferenz zum Thema Test und Diagnose in der Automobilentwicklung.,

Stuttgart, 2006.

[31] C. Hobbs, Embedded Software Development for Safety‐Critical Systems, Taylor & Francis

Group, 2016.

[32] AUTOSAR, „AUTOSAR ‐ The worldwide Automotive Standard for E/E systems,“ ATZ extra, p. 5,

2013.

[33] A. Spillner und T. Linz, Basiswissen Softwaretest [Elektronische Ressource] : Aus‐ und

Weiterbildung zum Certified Tester ‐ Foundation Level nach ISTQB‐Standard, Heidelberg:

dpunkt.verlag, 2012.

[34] International Software Testing Qualifications Board (ISTQB) / German Testing Board e.V. (GTB),

ISTQB/GTB Standardglossar der Testbegriffe Version 3.1, Erlangen: German Testing Board e.V.

(GTB), 13. April 2016.

[35] International Organization for Standardization (ISO), International Electrotechnical Commission

(IEC), Institute of Electrical and Electronics Engineers (IEEE), ISO/IEC/IEEE 29119‐3:2013

Software and systems engineering ‐ Software testing ‐ Part 3: Test documentation, 2013‐09‐01.

[36] AUTOSAR, „Acceptance Test Main Requirements AUTOSAR TC Release 1.1.0,“ [Online].

Available: http://www.autosar.org/fileadmin/files/releases/tc‐1‐

1/general_auxiliary/AUTOSAR_ATR_Main.pdf. [Zugriff am 2016 03 03].

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 48 of 61 July 4th‐‐2018

[37] International Organization for Standardization (ISO), International Electrotechnical Commission

(IEC), Institute of Electrical and Electronics Engineers (IEEE), ISO/IEC/IEEE 29119‐4:2015

Software and systems engineering ‐ Software testing ‐ Part 4: Test techniques, Bd. 4, 2015.

[38] International Organization for Standardization (ISO), International Electrotechnical Commission

(IEC), Institute of Electrical and Electronics Engineers (IEEE), ISO/IEC/IEEE 29148:2011 ‐ Systems

and software engineering ‐ Life cycle processes ‐ Requirements engineering, 2011‐12‐01.

[39] M. Winter, M. Ekssir‐Monfared, H. M. Sneed, R. Seidl und L. Borner, Der Integrationstest: Von

Entwurf und Architektur zur Komponenten‐ und Systemintegration, München: Carl Hanser

Verlag GmbH & Co. KG, 2012.

[40] International Organization for Standardization (ISO), International Electrotechnical Commission

(IEC), ISO/IEC 33020‐03:2015 Informationstechnik – Prozessbewertung – Rahmenwerk für

Prozessmessungen zur Beurteilung der Prozessfähigkeit, 01‐03‐2015.

[41] M. Conrad und G. Sandmann, „A Verification and Validation Worflow for IEC 61508

Applications,“ SAE International, 2009.

[42] H.‐W. Wiesbrock, M. Conrad, I. Fey und H. Pohlheim, „Ein neues automatisiertes

Auswertverfahren für Regressions‐ und Back‐to‐Back‐Tests eingebetteter Regelsysteme,“

Softwaretechnik‐Trends, Bd. 22, 2002.

[43] U. Freund, V. Jaikamal und J. Löchner, „Multilevel System Integration of Automotive ECUs

based on AUTOSAR,“ [Online]. Available: http://papers.sae.org/2009‐01‐0918/. [Zugriff am 27

09 2016].

[44] T. Ringler, C. Dziobek und F. Wohlgemuth, „Tagungsband Modellbasierte Entwicklung

eingebetteter Systeme ‐ Chancen und Herausforderungen bei der virtuellen Absicherung

verteilter Body&Comfort‐Funktionen auf Basis von AUTOSAR ‐ S.83 ‐ 93,“ [Online]. Available:

https://www.in.tu‐clausthal.de/fileadmin/homes/GI/Documents/MBEES15Proceedings.pdf.

[Zugriff am 27 09 2016].

[44] Bakshi, U.A.; Baksi; V.U.: Control Systems, Edition 2010. (English edition)

[45]

[46]

[47]

International Organization for Standardization (ISO), International Electrotechnical Commission

(IEC), ISO/IEC 2382:2015‐05 Information technology ‐ Vocabulary, 2015‐05.

International Organization for Standardization (ISO), International Electrotechnical Commission

(IEC), ISO/IEC 24765:20170‐09 Information technology ‐ Vocabulary, 2017‐09.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 49 of 61 July 4th‐‐2018

[48]

German Association of the Automotive Industry (VDA) / QMC Working Group 13 / Automotive

SIG, Automotive SPICE Process Assessment / Reference Model,

http://www.automotivespice.com/download/, 2017, Version 3.1.

International Software Testing Qualifications Board (ISTQB®) – ISTQB® Certified Tester

Foundation Level (CTFL®) Syllabus ‐ Version 2018.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 50 of 61 July 4th‐‐2018

Definitions

The following (non-bold print) syllabus specific terms are used in addition to the ISTQB® Glossary
[ISTQB®2016]. These terms should be used as defined here:

Term Definition / Meaning Glossary

Key

terms28

Reference

Automotive Open System
Architecture (AUTOSAR)

Development partnership founded in 2003 with the
objective of creating and establishing an open
industry standard for a software architecture in the
automotive industry.

Automotive Safety Integrity
Level

One of four levels to specify the item's or
element's necessary requirements of ISO 26262
and safety measures for avoiding an
unreasonable residual risk with 'D' representing
the most stringent and 'A' the least stringent
level.

X [8]

Automotive SPICE A process reference model and an associated
process assessment model for processes in the
automotive industry conforming with the
requirements of ISO/IEC 33002:2015.

X [9]

back-to-back-testing Testing to compare two or more variants of
a test item or a simulation model of the
same test item by executing the same test
cases on all variants and comparing the
results.

See also comparative testing.

X [32]

Basic software (AUTOSAR): standardized, hardware-oriented
software components.

 [9]

Breakout box A measuring unit to analyze, interrupt or manipulate
physical signals in wires.

 [10]

Bus system Network of several electronic control units that
exchange information via the same connections.

 [11]

28 The bold print terms will be transferred into ISTQB Glossary after GA Release.

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 51 of 61 July 4th‐‐2018

Term Definition / Meaning Glossary

Key

terms28

Reference

Capability dimension A number of process attributes divided by capability
levels is defined. The process attributes provide the
measurable characteristics of the process
capability..

 [7]

Capability indicator Indicators which can be used for the execution and
explanation of a process capability assessment.

 [7]

Capability level One or more process attributes which,
when sufficiently met, provide a significant
improvement of the process capability.

 [7]

closed-loop-System A system in which the controlling action or input
is dependent on the output or changes in
output.

See also open-loop-system.

X [44]

Code review A suitability check of the code against the planned
purpose and deviation analysis of provided
specifications and standards.

 [7]

coding standard A standard that describes the characteristics of
a design or a design description of data or
program components

X [46]

Components-HiL A test environment for the image of a single
Electronic control unit (ECU).

 [10]

Condition coverage See ISTQB® Glossary 3.1

Condition testing See ISTQB® Glossary 3.1

Criteria for verification A set of test cases and criteria for verification of
software..

 [9]

Cybersecurity (Automotive)

The state of being safe from electronic crime and
the measures taken to achieve this.

 TBD

Directive (MISRA) Programing guidelines in MISRA-C:2012 that are
not fully verified by static analysis tools.

 [12]

Defect list A list of fixed and not fixed defects. Usually a part of
the test report.

 [4]

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 52 of 61 July 4th‐‐2018

Term Definition / Meaning Glossary

Key

terms28

Reference

E/E-System Functional system of electric or electronic elements. [8]

ECU extract Includes the data for a Electronic control unit from
the system configuration description.

 [9]

ECU configuration description Includes data for the integration of the SW
components on the Electronic control unit

 [9]

environment model
(Automotive)

Abstraction of the real environment of a
component or system including. other
components, vehicle processes, environment
conditions in a real time simulation.

X [10]

Electrical Error Simulation See Fault insertion unit

Fixed point a number consisting of a fixed number of digits. The
position of the comma is fixed.

Floating point an approximate representation of a real number. [13]

Fault injection

See ISTQB® Glossary 3.1

Fault insertion unit A part of a test environment that is able to
simulate defects at the interfaces of a
component or system.

functional safety Absence of unreasonable risk due to
hazards caused by malfunctioning
behaviour of Electric/Electronic(E/E) –
systems.

X [3]

Hardware in the Loop Dynamic testing conducted using real
hardware with integrated software in a
simulated environment.

X [4]

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 53 of 61 July 4th‐‐2018

Term Definition / Meaning Glossary

Key

terms28

Reference

Installation recommendation An addition to the SW release with which the
supplier confirms to the OEM that the release item
has unlimited release for public roads and may be
used/tested there.

List of functions The functions to be implemented for a release are
specified during release planning and stated in the
function list.

 [4]

soak test A soak test is similar to tests derived from field
experience but use a larger sample size, normal
users as testers, and are not bound to prior
specified test scenarios, but performed under real-
life conditions during everyday life. These tests can
have limitations if necessary to ensure the safety of
the testers, e.g. with additional safety measures or
disabled actuators.

 [8]

method table (Automotive) A table containing different test approaches,
testing techniques and test types that are
required depending on the Automotive Safety
Integrity Level (ASIL) and on the context of the
test object.

X [8]

Model in the Loop Dynamic testing conducted using a simulation

model of the system in a simulated environment.

X [4]

Modified condition/decision
testing (MC/DC-Test)

See ISTQB® Glossary 3.1.

Multiple condition testing See ISTQB® Glossary 3.1

open–loop-system A system in which controlling action or input

is independent of the output or changes in

output.

See also closed‐loop‐system.

X [44]

Original equipment
manufacturer (OEM)

In the automotive industry, this term is used to
describe car producers. See also “Tier 1… n”

 [2]

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 54 of 61 July 4th‐‐2018

Term Definition / Meaning Glossary

Key

terms28

Reference

Product development process Process that includes all activities from the first
product idea until the production.

 [15]

Production Production of the developed product.

In PEP in the automotive environment also known
as manufacturing / serial manufacturing.

 [14, 1]

Process attribute Measurable characteristics of a process for process
capability assessment.

 [7]

Process dimension All relevant processes are defined and combined in
process categories and at a second level in process
groups.

 [7]

Process improvement See ISTQB® Glossary 3.1

Process model See ISTQB® Glossary 3.1

Product lifecycle See System lifecycle

Release Statement about the implemented functions,
properties and intended use for a release item.
[15]

 [15]

Release item

Unambiguously identifiable element with stated

functions, properties and purpose. [15]
 [6]

Release process Process that leads to release. [4]

Release purpose

Purpose, for which the release item can or may be
used.

 [4]

Release recommendation Recommendation by the tester or the test manager
to release (or not release) the release item based
on the test results

 [4]

Real time Operation of a computer system in which programs
for processing data are constantly ready for
operation in such a way, that the processing results
are available within a predetermined period of time.
Depending on the application, the data may be
generated according to a temporally random
distribution or at predetermined times.

 [45]

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 55 of 61 July 4th‐‐2018

Term Definition / Meaning Glossary

Key

terms28

Reference

Real time capable computer A computing unit that guarantees the processing of
signals

in a defined window of time.

 [10]

Reference Process See ISTQB® Glossary 3.1

Regression test strategy The regression test strategy defines which criteria
are used to select the regression test cases when
there is a change to the test item.

Rest bus simulation Virtualization of the bus communication interface of
non-existing electronic control units.

Rule (MISRA) Programming Guideline in MISRA-C:2012 which is
verifiable by static analysis tools.

 [12]

Runtime environment
(AUTOSAR)

The abstraction layer, which controls and
implements the data exchange between AUTOSAR
software components as well as between
application and Base Software (BSW), inside as
well as outside of the control units

 [9]

Safety Culture The company-wide attitude to commonly develop a
functionally safe product.

 [8]

Safety lifecycle Product lifecycle of a safety relevant system. It
starts with the product idea and ends with the
disposal of the product at the end of its lifecycle.

 [8]

Simulation time The timeframe, which is valid for a computer
simulation.

 [10]

Software component The (AUTOSAR): hardware-independent software
layer which includes the individual applications and
functionalities.

 [9]

Software in the loop (SiL) Dynamic testing conducted using the real
software in a simulated environment or with
experimental hardware.

X [4]

software qualification test
(ASPICE)

Testing conducted on a completed, integrated
software to provide evidence for compliance
with the software requirements.

X [9]

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 56 of 61 July 4th‐‐2018

Term Definition / Meaning Glossary

Key

terms28

Reference

System-HiL A test environment for the image of a electronic
control unit group up to the entire vehicle.

 [10]

System integration test
(ASPICE)

Testing against the system architectural design to
provide evidence for compliance of the integrated
system items with the system architectural design,
including the interfaces between system items.

 [9]

System configuration
description

The data used in the integration of all electronic
control units in a vehicle.

 [9]

System lifecycle The phases of development and implementation of
a system beyond the PEP until its retirement.

 [15, 1, 14]

system qualification test
(ASPICE)

Testing conducted on the completed, integrated
system of software components, hardware
components and mechanics to provide evidence
for compliance with the system requirements
and that the complete system is ready for
delivery.

X [9]

System of systems testing Testing a system of systems to verify that it meets
specified requirements.

Test item 1. See ISTQB® Glossary

2. Test item in the automotive context consists of
a software configuration including basic
parameterization and usually also a hardware
and mechanics. [6]

 [4]

Tier 1…n The suppliers in the supply chain on the different
levels are named Tier 1…n. The direct suppliers of
the OEM are called Tier 1, the suppliers of a Tier 1
are called Tier 2, etc.

 [2]

Test documentation Documentation describing plans for, or results of,
the testing of a system or component.
[ISO/IEC/IEEE 24765]

 [46]

Test strategy See ISTQB® Glossay 3.1

Traceability See ISTQB® Glossary 3.1

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 57 of 61 July 4th‐‐2018

Term Definition / Meaning Glossary

Key

terms28

Reference

Verification criteria Verification criteria defining qualitative and
quantitative criteria which must be fulfilled to
successfully verify a test item.

 [7]

Verification strategy A high-level plan for the verification of an item
containing

verification criteria, verification activities with
associated methods, techniques and tools, and
work products or processes under verification.

 [7]

XiL test environment A generic term for dynamic testing in different
virtual test environments.

See also

Hardware in the Loop, Software in the Loop,

Model in the Loop

X

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 58 of 61 July 4th‐‐2018

Abbreviations

The following abbreviations are used in this syllabus:

Abbreviation Definition / Meaning Reference

ACQ Acquisition [7]

ASIL Automotive Safety Integrity Level [8]

ASAM Association for Standardisation of
Automation and Measuring Systems

[18]

ASPICE Automotive SPICE

AUTOSAR Automotive Open System
Architecture

[9]

AUTOSIG Automotive Specific Interest Group [17]

BP Base Practice [7]

BSW Base Software [9]

CTFL® Certified Tester Foundation Level

E/E Electric / Electronic

ECU Electronic Control Unit

EES Electrical Error Simulation [16]

EOP End-of-Production

FIU Fault Insertion Unit [18]

GP Generic Practice [7]

HiL Hardware-in-the-Loop

IEC International Electrotechnical
Commission

ISO International Organization for
Standardization

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 59 of 61 July 4th‐‐2018

ISTQB® International Software Testing
Qualifications Board

MAN Management (ASPICE) [7]

MC/DC Modified Condition/Decision
Coverage

MIL Model in the loop

MISRA Motor Industry Software Reliability
Association

OEM Original Equipment Manufacturer

PA Process Attribute [7]

PEP Product Evolution Process [15]

PIM Process Improvement (ASPICE) [7]

QM Quality Management

REU Reuse (ASPICE) [7]

RTE Run Time Environment [9]

SIL Software in the Loop

SOP Start-of-Production

SPICE Software Process Improvement and
Capability Determination

[7]

SPL Supply (ASPICE) [7]

SUP Support (ASPICE) [7]

SW Software

SW-C Software Component [9]

SWE Software Engineering (ASPICE) [7]

SYS System Engineering (ASPICE) [7]

VDA German Association of the
Automotive Industry

WP Work Product [7]

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 60 of 61 July 4th‐‐2018

Index

A

acceptance test 28

ASIL 24
Automotive SPICE 16
AUTOSAR 26

B

back-to-back-testing 41

C

Closed-Loop system 31

coding guidelines 38
component test 28

condition coverage 40
condition testing 40
criteria for verification 20

D

display of levels 17

E

environment model 31, 33

F

fault injection 41
functional safety 21

H

Hardware in the Loop 34

I

integration 26
integration test 28

M

MC/DC-Test 40
method tables 24, 29
Model in the Loop 33
modified condition/decision testing 40
multiple condition test 40
multi‐system test 28

O

Open-Loop-System 31

P

process category 17
process group 17
process improvement 16, 17
process models 16

Q

quality characteristics 39

R

reference processes 16
regression test strategy 19
release 14
release item 14

Requirements-based testing 42

XCP Universal Measurement and
Calibration Protocol

[19]

XIL Stands as upper tem for different in
the Loop

Foundation Level Specialist
CTFL® Automotive Software Tester (CTFL®-AuT)

English V2.0.2 Page 61 of 61 July 4th‐‐2018

S

safety life cycle 21
software component verification 18
Software in the Loop 34
software qualification test 18
system integration test 18, 27, 28
system life cycle 13
system qualification test 18
system test 27, 28

T

test documentation 19

test levels 23, 27, 28
test strategy 19
traceability 20

V

verification 22, 23, 28
verification strategy 19

X

XiL test environments 33

